Mathematical analysis of an integral equation arising from population dynamics

被引:1
|
作者
Kay, D. A. [1 ]
Sagheer, M. [1 ]
Tang, Q. [1 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
关键词
population dynamics; non-linear integral equations; eigenvalues and eigenvectors; GENETIC-VARIABILITY; ASEXUAL POPULATION; EVOLUTION; SEX; MODEL;
D O I
10.1016/j.mbs.2007.05.013
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we establish the existence of travelling wave solution to an intrinsically non-linear differential-integral equation formed as a result of mathematical modelling of the evolution of an asexual population in a changing environment. This equation is first converted to a non-linear integral equation. The discretization and manipulation of the corresponding eigenvalue problem allows us to use the theory of positive matrices to get some very useful estimates and then to confirm the existence of solution. We also exhibit numerical simulation results and explain the biological meaning of the results. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:415 / 435
页数:21
相关论文
共 50 条
  • [1] Solution of a Nonlinear Integral Equation Arising in the Moment Approximation of Spatial Logistic Dynamics
    Nikolaev, Mikhail
    Nikitin, Alexey
    Dieckmann, Ulf
    MATHEMATICS, 2024, 12 (24)
  • [2] Stability Analysis of the Solution to a System of Nonlinear Integral Equations Arising in a Logistic Dynamics Model
    Nikolaev, M. V.
    Nikitin, A. A.
    Dieckmann, U.
    DOKLADY MATHEMATICS, 2022, 106 (03) : 445 - 448
  • [3] Stability Analysis of the Solution to a System of Nonlinear Integral Equations Arising in a Logistic Dynamics Model
    M. V. Nikolaev
    A. A. Nikitin
    U. Dieckmann
    Doklady Mathematics, 2022, 106 : 445 - 448
  • [4] Special solutions for an equation arising in sand ripple dynamics
    Colucci, Renato
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [5] STABILITY ANALYSIS OF A RENEWAL EQUATION FOR CELL POPULATION DYNAMICS WITH QUIESCENCE
    Alarcon, Tomas
    Getto, Philipp
    Nakata, Yukihiko
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (04) : 1266 - 1297
  • [6] Progress in mathematical population dynamics and ecology
    Mistro, Diomar C.
    Rodrigues, Luiz Alberto D.
    ECOLOGICAL COMPLEXITY, 2014, 18 : 3 - 5
  • [7] Population Dynamics: Mathematical Modeling and Reality
    Medvinsky A.B.
    Adamovich B.V.
    Rusakov A.V.
    Tikhonov D.A.
    Nurieva N.I.
    Tereshko V.M.
    Biophysics, 2019, 64 (6) : 956 - 977
  • [8] Mathematical modeling of cyclic population dynamics
    Bayliss, A.
    Nepomnyashchyl, A. A.
    Volpert, V. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 394 : 56 - 78
  • [9] On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain
    Labbas, R.
    Maingot, S.
    Manceau, D.
    Thorel, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 351 - 376
  • [10] A mechanistic analysis of density dependence in algal population dynamics
    Borlestean, Adrian
    Frost, Paul C.
    Murray, Dennis L.
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2015, 3