Oxalate-Based High-Capacity Conversion Anode for Potassium Storage

被引:17
作者
Jo, Chang-Heum [1 ,2 ]
Jo, Jae Hyeon [1 ,2 ]
Choi, Ji Ung [1 ,2 ]
Yashiro, Hitoshi [3 ]
Kim, Hyungsub [1 ,2 ,4 ]
Myung, Seung-Taek [1 ,2 ]
机构
[1] Sejong Univ, Dept Nano Technol & Adv Mat Engn, Seoul 143747, South Korea
[2] Sejong Univ, Sejong Battery Inst, Seoul 143747, South Korea
[3] Iwate Univ, Dept Chem & Bioengn, Morioka, Iwate 0204551, Japan
[4] KAERI, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
conversion; cobalt oxalate; anode; potassium; battery; LITHIUM-ION; SODIUM-ION; COMPOSITE ANODES; K-ION; CATHODE; BATTERIES; CARBON; MOS2; NANOPARTICLES; PERFORMANCES;
D O I
10.1021/acssuschemeng.9b06951
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conversion anode materials have been applied in lithium and sodium secondary batteries owing to their high capacities; however, there are limited reports on their use in potassium-ion batteries. Herein, we introduce cobalt oxalate as a high-capacity anode material for potassium storage. Carbon nanotubes are encapsulated by long CoC2O4 sticks (similar to 5 mu m in length) to establish a facile electron transport path, resulting in a specific charge (oxidation) capacity of 394 mAh g(-1) (80 mA g(-1), 0.2C) with a capacity retention of 73% over 200 cycles. Moreover, the composite electrode is active at a rate of 3C (1.2 A CI), with a charge capacity of 161 mAh g(-1). In situ X-ray diffraction, X-ray absorption spectroscopy, and time-of-flight secondary-ion mass spectroscopy studies reveal the occurrence of the conversion reaction CoC2O4 + 2K(+) + 2e(-) -> Co + K2C2O4 on reduction, which reversibly occurs on oxidation. Microscopic studies demonstrate that the conversion reaction occurs on the carbon nanotubes where the CoC2O4 sticks are suited, indicating that the carbon nanotubes assist in facile electron transfer and enable the reversibility of the conversion reaction.
引用
收藏
页码:3743 / 3750
页数:15
相关论文
共 49 条
[1]   Synergistic effects of transition metal substitution in conversion electrodes for lithium-ion batteries [J].
Aragon, Maria J. ;
Leon, Bernardo ;
Serrano, Thelma ;
Perez Vicente, Carlos ;
Tirado, Jose L. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :10102-10107
[2]   α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications [J].
Chen, J ;
Xu, LN ;
Li, WY ;
Gou, XL .
ADVANCED MATERIALS, 2005, 17 (05) :582-+
[3]   Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 [J].
Cho, Dae-Hyun ;
Jo, Chang-Heum ;
Cho, Woosuk ;
Kim, Young-Jun ;
Yashiro, Hitoshi ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) :A920-A926
[4]   K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries [J].
Choi, Ji Ung ;
Kim, Jongsoon ;
Hwang, Jang-Yeon ;
Jo, Jae Hyeon ;
Sun, Yang-Kook ;
Myung, Seung-Taek .
NANO ENERGY, 2019, 61 :284-294
[5]   Impact of Na2MoO4 nanolayers autogenously formed on tunnel-type Na0.44MnO2 [J].
Choi, Ji Ung ;
Jo, Jae Hyeon ;
Jo, Chang-Heum ;
Cho, Min Kyoung ;
Park, Yun Ji ;
Jin, Yongcheng ;
Yashiro, Hitoshi ;
Myung, Seung-Taek .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) :13522-13530
[6]   Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries [J].
Choi, Jonghyun ;
Kim, Won-Sik ;
Kim, Kyeong-Ho ;
Hong, Seong-Hyeon .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (36) :17437-17443
[7]   Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities [J].
Dong, Yanfeng ;
Wu, Zhong-Shuai ;
Zheng, Shuanghao ;
Wang, Xiaohui ;
Qin, Jieqiong ;
Wang, Sen ;
Shi, Xiaoyu ;
Bao, Xinhe .
ACS NANO, 2017, 11 (05) :4792-4800
[8]   A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries [J].
Hwang, Jang-Yeon ;
Kim, Jongsoon ;
Yu, Tae-Yeon ;
Jung, Hun-Gi ;
Kim, JaeKook ;
Kim, Kwang-Ho ;
Sun, Yang-Kook .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (37) :21362-21370
[9]   Recent Progress in Rechargeable Potassium Batteries [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (43)
[10]   Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode [J].
Jian, Zelang ;
Xing, Zhenyu ;
Bommier, Clement ;
Li, Zhifei ;
Ji, Xiulei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)