C3SRAM: In-Memory-Computing SRAM Macro Based on Capacitive-Coupling Computing

被引:40
作者
Jiang, Zhewei [1 ]
Yin, Shihui [2 ]
Seo, Jae-Sun [2 ]
Seok, Mingoo [1 ]
机构
[1] Columbia Univ, Elect Engn Dept, New York, NY 10027 USA
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2019年 / 2卷 / 09期
关键词
Capacitive coupling; in-memory-computing (IMC); machine learning accelerator; mixed-signal processing; neural network;
D O I
10.1109/LSSC.2019.2934831
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents C3SRAM, an in-memory-computing SRAM macro, which utilizes analog-mixed-signal capacitive-coupling computing to perform XNOR-and-accumulate operations for binary deep neural networks. The 256 x 64 C3SRAM macro asserts all 256 rows simultaneously and equips one ADC per column, realizing fully parallel vector-matrix multiplication in one cycle. C3SRAM demonstrates 672 TOPS/W and 1638 GOPS, and achieves 98.3% accuracy for MNIST and 85.5% for CIFAR-10 dataset. It achieves 3975x smaller energy-delay product than conventional digital processors.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 12 条
[1]  
Biswas A, 2018, ISSCC DIG TECH PAP I, P488, DOI 10.1109/ISSCC.2018.8310397
[2]  
Guo RQ, 2019, SYMP VLSI CIRCUITS, pC120, DOI [10.23919/vlsic.2019.8778028, 10.23919/VLSIC.2019.8778028]
[3]  
Hubara I, 2018, J MACH LEARN RES, V18
[4]  
Jiang ZW, 2018, 2018 IEEE SYMPOSIUM ON VLSI TECHNOLOGY, P173, DOI 10.1109/VLSIT.2018.8510687
[5]  
Kang MG, 2017, ESSCIRC 2017 - 43RD IEEE EUROPEAN SOLID STATE CIRCUITS CONFERENCE, P263, DOI 10.1109/ESSCIRC.2017.8094576
[6]  
Kim J, 2019, SYMP VLSI CIRCUITS, pC118, DOI [10.23919/VLSIC.2019.8778160, 10.23919/vlsic.2019.8778160]
[7]  
Lin XF, 2017, ADV NEUR IN, V30
[8]  
Okumura S, 2019, S VLSI TECH, pC248
[9]  
Si X, 2019, ISSCC DIG TECH PAP I, V62, P396, DOI 10.1109/ISSCC.2019.8662392
[10]  
Valavi H, 2018, SYMP VLSI CIRCUITS, P141, DOI 10.1109/VLSIC.2018.8502421