A Reinforcement Learning Framework for Relevance Feedback

被引:25
作者
Montazeralghaem, Ali [1 ]
Zamani, Hamed [2 ]
Allan, James [1 ]
机构
[1] Univ Massachusetts Amherst, Ctr Intelligent Informat Retrieval, Amherst, MA 01003 USA
[2] Microsoft, Redmond, WA USA
来源
PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20) | 2020年
关键词
RETRIEVAL; GRADIENT; MODELS;
D O I
10.1145/3397271.3401099
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present RML, the first known general reinforcement learning framework for relevance feedback that directly optimizes any desired retrieval metric, including precision-oriented, recall-oriented, and even diversity metrics: RML can be easily extended to directly optimize any arbitrary user satisfaction signal. Using the RML framework, we can select effective feedback terms and weight them appropriately, improving on past methods that fit parameters to feedback algorithms using heuristic approaches or methods that do not directly optimize for retrieval performance. Learning an effective relevance feedback model is not trivial since the true feedback distribution is unknown. Experiments on standard TREC collections compare RML to existing feedback algorithms, demonstrate the effectiveness of RML at optimizing for MAP and alpha-nDCG, and show the impact on related measures.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 58 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Aggarwal Nitish, 2012, CLEF ONLINE WORKING
[3]   Target Apps Selection: Towards a Unified Search Framework for Mobile Devices [J].
Aliannejadi, Mohammad ;
Zamani, Hamed ;
Crestani, Fabio ;
Croft, W. Bruce .
ACM/SIGIR PROCEEDINGS 2018, 2018, :215-224
[4]  
[Anonymous], 2016, ARXIV161204251
[5]  
[Anonymous], 2014, P 23 ACM INT C C INF
[6]  
[Anonymous], 2017, SIGIR Forum, DOI [DOI 10.1145/290941.291008, 10.1145/290941.291008]
[7]  
[Anonymous], 2017, CoRR
[8]  
[Anonymous], 2001, Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval, DOI 10.1145/383952.383970
[9]   Iterative Estimation of Document Relevance Score for Pseudo-Relevance Feedback [J].
Ariannezhad, Mozhdeh ;
Montazeralghaem, Ali ;
Zamani, Hamed ;
Shakery, Azadeh .
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2017, 2017, 10193 :676-683
[10]   LOCAL FEEDBACK IN FULL-TEXT RETRIEVAL SYSTEMS [J].
ATTAR, R ;
FRAENKEL, AS .
JOURNAL OF THE ACM, 1977, 24 (03) :397-417