Path planning for UAVs formation reconfiguration based on Dubins trajectory

被引:23
作者
Chen Qing-yang [1 ]
Lu Ya-fei [1 ]
Jia Gao-wei [1 ]
Li Yue [2 ]
Zhu Bing-jie [1 ]
Lin Jun-can [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Hunan, Peoples R China
[2] Naval Aeronaut & Astronaut Univ, Dept Airborne Vehicle Engn, Yantai 264001, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
unmanned aerial vehicles; formation reconfiguration; path planning; Dubins trajectory; particle swarm optimization;
D O I
10.1007/s11771-018-3944-z
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance, search, attack and rescue missions. Formation reconfiguration was inevitable during the flight when the mission was adjusted or the environment varied. Taking the typical formation reconfiguration from a triangular penetrating formation to a circular tracking formation for example, a path planning method based on Dubins trajectory and particle swarm optimization (PSO) algorithm is presented in this paper. The mathematic model of multiple UAVs formation reconfiguration was built firstly. According to the kinematic model of aerial vehicles, a process of dimensionality reduction was carried out to simplify the model based on Dubins trajectory. The PSO algorithm was adopted to resolve the optimization problem of formation reconfiguration path planning. Finally, the simulation and vehicles flight experiment are executed. Results show that the path planning method based on the Dubins trajectory and the PSO algorithm can generate feasible paths for vehicles on time, to guarantee the rapidity and effectiveness of formation reconfigurations. Furthermore, from the simulation results, the method is universal and could be extended easily to the path planning problem for different kinds of formation reconfigurations.
引用
收藏
页码:2664 / 2676
页数:13
相关论文
共 21 条
[1]  
Buzogany L E, 1993, P AIAA GUID NAV CONT
[2]  
Chen QY, 2016, 2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), P730, DOI 10.1109/CGNCC.2016.7828876
[3]   Path Planning for Multi-UAV Formation [J].
Chen, YongBo ;
Yu, JianQiao ;
Su, XiaoLong ;
Luo, GuanChen .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 77 (01) :229-246
[4]   Unmanned aerial systems for photogrammetry and remote sensing: A review [J].
Colomina, I. ;
Molina, P. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 92 :79-97
[5]   3D Path Planning for Multiple UAVs for Maximum Information Collection [J].
Ergezer, Halit ;
Leblebicioglu, Kemal .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2014, 73 (1-4) :737-762
[6]  
Gao Chen, 2014, Journal of Applied Sciences - Electronics and Information Engineering, V32, P287, DOI 10.3969/j.issn.0255-8297.2014.03.010
[7]   Design and flight testing evaluation of formation control laws [J].
Gu, Yu ;
Seanor, Brad ;
Campa, Giampiero ;
Napolitano, Marcello R. ;
Rowe, Larry ;
Gururajan, Srikanth ;
Wan, Sheng .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2006, 14 (06) :1105-1112
[8]  
Hyondong O, 2011, AIAA GUID NAV CONTR
[9]  
Israel L, 2014, 2014 INT C UNM AIRCR, P339
[10]   Approaches to vision-based formation control [J].
Johnson, EN ;
Calise, AJ ;
Sattigeri, R ;
Watanabe, Y ;
Madyastha, V .
2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, :1643-1648