Scalable self-assembly interfacial engineering for high-temperature dielectric energy storage

被引:10
作者
Wu, Chao [1 ]
LaChance, Anna Marie [2 ,3 ]
Baferani, Mohamadreza Arab [1 ,4 ]
Shen, Kuangyu [2 ,3 ]
Li, Zongze [1 ,4 ]
Hou, Zaili [2 ,3 ]
Wang, Ningzhen [1 ]
Wang, Yifei [1 ]
Sun, Luyi [2 ,3 ]
Cao, Yang [1 ,4 ]
机构
[1] Univ Connecticut, Elect Insulat Res Ctr, Inst Mat Sci, Storrs, CT 06269 USA
[2] Univ Connecticut, Inst Mat Sci, Polymer Program, Storrs, CT 06269 USA
[3] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
[4] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
基金
美国国家科学基金会;
关键词
ELECTRICAL-CONDUCTION; FLAME-RETARDANT; COTTON FABRICS; POLYPROPYLENE;
D O I
10.1016/j.isci.2022.104601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Flexible polymer dielectrics which can function well at elevated temperatures continue to be significant in harsh condition energy storage. However, state-of-the-art high-temperature polymers traditionally designed with conjugated structures for better thermal stability have compromised bandgaps and charge injection barriers. Here, we demonstrate a self-assembled polyvinyl alcohol (PVA)/montmorillonite (MMT) coating to impede charge carriers injecting into the polyimide (PI) polymer film. The anisotropic conductivity of the 2D nanolayered coating further dissipates the energy of charges through tortuous injection pathways. With the coating, high field pre-breakdown conduction measurement and space-charge profiling of PI films reveal a clear shifting of the dominant mode of conduction from the bulk-limited hopping to Schottky-injection limited conduction. The coating thus imparts PI films with a significantly suppressed electrical conduction (similar to 10x), and substantially improved discharge efficiency (7x) and energy density (2.7x) at 150 degrees C. The facile and scalable flow-induced fabrication unleash enormous applications for harsh condition electrification.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Atomic layer deposition coated polymer films with enhanced high-temperature dielectric strength suitable for film capacitors [J].
Wu, Xudong ;
Liu, Yichen ;
Lin, Xiaotian ;
Huang, Enling ;
Song, Guanghui ;
Tan, Daniel Q. .
SURFACES AND INTERFACES, 2022, 28
[42]   Largely enhanced dielectric properties of polymer composites with HfO2 nanoparticles for high-temperature film capacitors [J].
Ren, Lulu ;
Yang, Lijun ;
Zhang, Siyu ;
Li, He ;
Zhou, Yao ;
Ai, Ding ;
Xie, Zongliang ;
Zhao, Xuetong ;
Peng, Zongren ;
Liao, Ruijin ;
Wang, Qing .
COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 201
[43]   Flame-retardant textile based triboelectric nanogenerators for energy harvesting and high-temperature sensing [J].
Zhao, Junwei ;
Wang, Yupeng ;
Chen, Jian ;
Wang, Yanzhe ;
Hou, Chunli ;
Wang, Yujiang .
NANO ENERGY, 2024, 131
[44]   Mechanical and temperature dependence of dielectric properties for Mg1-xCuxO/PMMA nanocomposites used in energy storage applications [J].
Alatawi, Ayshah S. ;
Abulyazied, Dalia E. ;
Alturki, Asma M. ;
Abomostafa, H. M. .
COLLOID AND POLYMER SCIENCE, 2025, :923-936
[45]   Ultrahigh charge-discharge efficiency and high energy density of a high-temperature stable sandwich-structured polymer [J].
Chen, Hanxi ;
Pan, Zhongbin ;
Cheng, Yu ;
Ding, Xiangping ;
Liu, Jinjun ;
Chi, Qingguo ;
Yang, Minhao ;
Yu, Jinhong ;
Dang, Zhi-Min .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (03) :1579-1587
[46]   Scalable all polymer dielectrics with self-assembled nanoscale multiboundary exhibiting superior high temperature capacitive performance [J].
Zhang, Qiyan ;
Xie, Qiaohui ;
Wang, Tao ;
Huang, Shuangwu ;
Zhang, Qiming .
NATURE COMMUNICATIONS, 2024, 15 (01)
[47]   Enhanced Discharged Efficiency and High Energy Density at Elevated Temperature in Polymer Dielectric via Manipulating Relaxation Behavior [J].
Zhang, Yu ;
Liu, Zheng ;
Zhu, Lixue ;
Liu, Jie ;
Zhang, Yunhe ;
Jiang, Zhenhua .
CCS CHEMISTRY, 2020, 2 (05) :1169-1177
[48]   High-temperature dielectric relaxation mechanism in Ba4SmFe0.5Nb9.5O30 tungsten bronze ceramics [J].
Hu, Changzheng ;
Guo, Zhe ;
Wu, Shan ;
Sun, Zhen ;
Li, Chunchun ;
Liu, Laijun ;
Fang, Liang .
CERAMICS INTERNATIONAL, 2018, 44 :S224-S227
[49]   High-temperature dielectric properties and impedance spectroscopy of PbHf1-x Snx O3 ceramicsInspec keywordsOther keywords [J].
Liu, Zhi-Gang ;
Ge, Peng-Zu ;
Tang, Hui ;
Tang, Xin-Gui ;
Zeng, Si-Ming ;
Jiang, Yan-Ping ;
Tang, Zhen-Hua ;
Liu, Qiu-Xiang .
IET NANODIELECTRICS, 2020, 3 (04) :131-137
[50]   Molecular trap engineering enables superior high-temperature charge-discharge efficiency in a polymer blend with densely packed molecular chains [J].
Zhang, Qiyan ;
Zhuo, Juntian ;
Liao, Wugang ;
Huang, Shuangwu ;
Dong, Shuxiang .
JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (11) :5496-5502