Quantifying the influence of dispersion interactions on the elastic properties of crystalline cellulose

被引:17
作者
Chen, Pan [1 ]
Nishiyama, Yoshiharu [2 ]
Wohlert, Jakob [3 ,4 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Engn Res Ctr Cellulose & Its Derivat, Beijing 100081, Peoples R China
[2] Univ Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
[3] KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Dept Fibre & Polymer Technol, S-10044 Stockholm, Sweden
[4] KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, S-10044 Stockholm, Sweden
基金
北京市自然科学基金; 瑞典研究理事会;
关键词
Dispersion interaction; Density functional theory; Crystalline cellulose; HYDROGEN-BONDING SYSTEM; SYNCHROTRON X-RAY; MOLECULAR-DYNAMICS; I-BETA; DEFORMATION;
D O I
10.1007/s10570-021-04210-0
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Dispersion and electrostatic interactions both contribute significantly to the tight assembly of macromolecular chains within crystalline polysaccharides. Using dispersion-corrected density functional theory (DFT) calculation, we estimated the elastic tensor of the four crystalline cellulose allomorphs whose crystal structures that are hitherto available, namely, cellulose I alpha, I beta, II, IIII. Comparison between calculations with and without dispersion correction allows quantification of the exact contribution of dispersion to stiffness at molecular level.
引用
收藏
页码:10777 / 10786
页数:10
相关论文
共 38 条
[1]  
Ahrens J., 2005, VISUALIZATION HDB, P717
[2]  
[Anonymous], ENCY DICT POLYM, P582
[3]   Unusually Large Young's Moduli of Amino Acid Molecular Crystals [J].
Azuri, Ido ;
Meirzadeh, Elena ;
Ehre, David ;
Cohen, Sidney R. ;
Rappe, Andrew M. ;
Lahav, Meir ;
Lubomirsky, Igor ;
Kronik, Leeor .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (46) :13566-13570
[4]   Why Are Diphenylalanine-Based Peptide Nanostructures so Rigid? Insights from First Principles Calculations [J].
Azuri, Ido ;
Adler-Abramovich, Lihi ;
Gazit, Ehud ;
Hod, Oded ;
Kronik, Leeor .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) :963-969
[5]   Simulation studies of the insolubility of cellulose [J].
Bergenstrahle, Malin ;
Wohlert, Jakob ;
Himmel, Michael E. ;
Brady, John W. .
CARBOHYDRATE RESEARCH, 2010, 345 (14) :2060-2066
[6]   Ab Initio Study of Structure and Interconversion of Native Cellulose Phases [J].
Bucko, Tomas ;
Tunega, Daniel ;
Angyan, Janos G. ;
Hafner, Juergen .
JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (35) :10097-10105
[7]   Double-Helical → Ladder Structural Transition in the B-DNA is Induced by a Loss of Dispersion Energy [J].
Cerny, Jiri ;
Kabelac, Martin ;
Hobza, Pavel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (47) :16055-16059
[8]   Alternative hydrogen bond models of cellulose II and IIII based on molecular force-fields and density functional theory [J].
Chen, Pan ;
Ogawa, Yu ;
Nishiyama, Yoshiharu ;
Bergenstrahle-Wohlert, Malin ;
Mazeau, Karim .
CELLULOSE, 2015, 22 (03) :1485-1493
[9]   PASCal: a principal axis strain calculator for thermal expansion and compressibility determination [J].
Cliffe, Matthew J. ;
Goodwin, Andrew L. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 :1321-1329
[10]   Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds [J].
Djahedi, Cyrus ;
Berglund, Lars A. ;
Wohlert, Jakob .
CARBOHYDRATE POLYMERS, 2015, 130 :175-182