Decomposition lemmes applied to Hardy-Sobolev type inequalities

被引:0
作者
Colin, F [1 ]
机构
[1] Univ Moncton, Dept Math & Stat, Moncton, NB E1A 3E9, Canada
关键词
D O I
10.1007/s11118-004-6318-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Decomposition (or concentration-compactness) lemmas have already shown their efficience in order to show existence of minimizers or ground state solutions. The aim of this paper is to apply new version of these lemmas to minimisation problems involving Hardy-Sobolev type inequalities on a specific class of unbounded domains. More precisely, we shall find ground state solution for the following quotient, where value of real numbers epsilon, b, q and a are given. [GRAPHICS] We shall end this paper by establishing a decomposition lemma for cylindrical domains. More precisely, we shall find a minimizer for the following quantity: [GRAPHICS]
引用
收藏
页码:181 / 206
页数:26
相关论文
共 14 条
  • [1] Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
  • [2] Brezis H., 1997, ANN SC NORM PISA, V25, P217
  • [3] Minimization problems related to generalized Hardy's inequalities
    Colin, F
    Hupperts, Y
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) : 1933 - 1945
  • [4] COLIN F, 2001, TOPOL METHOD NONL AN, V17, P277
  • [5] COLIN F, 2002, ANN SCI MATH QUEBEC, V26, P25
  • [6] COLIN F, 2002, THESIS U SHERBROOKE
  • [7] On the best constant for Hardy's inequality in Rn
    Marcus, M
    Mizel, VJ
    Pinchover, Y
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (08) : 3237 - 3255
  • [8] Opic B., 1990, Pitman Research Notes in Mathematics Series, V219
  • [9] RAMOS M, 1999, CALCULUS VARIATIONS, P192
  • [10] Singular minimization problems
    Wang, ZQ
    Willem, M
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 161 (02) : 307 - 320