Domination of multilinear singular integrals by positive sparse forms

被引:46
作者
Culiuc, Amalia [1 ]
Di Plinio, Francesco [2 ]
Ou, Yumeng [3 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Virginia, Dept Math, Kerchof Hall,Box 400137, Charlottesville, VA 22904 USA
[3] MIT, Dept Math, 77 Mass Ave, Cambridge, MA 02139 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2018年 / 98卷
基金
美国国家科学基金会;
关键词
WEIGHTED NORM INEQUALITIES; VECTOR-VALUED INEQUALITIES; FOURIER-SERIES; OPERATORS; POINTWISE; BOUNDS; EXTRAPOLATION; COMMUTATORS; MULTIPLIERS;
D O I
10.1112/jlms.12139
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a uniform domination of the family of trilinear multiplier forms with singularity over a one-dimensional subspace by positive sparse forms involving Lp-averages. This class includes the adjoint forms to the bilinear Hilbert transforms. Our result strengthens the Lp-boundedness proved by Muscalu, Tao and Thiele, and entails as a corollary a novel rich multilinear weighted theory. A particular case of this theory is the Lq(v1)xLq(v2)-boundedness of the bilinear Hilbert transform when the weight vj belong to the class A<mml:mfrac>q+12</mml:mfrac>RH2. Our proof relies on a stopping time construction based on newly developed localized outer-Lp embedding theorems for the wave packet transform. In the Appendix, we show how our domination principle can be applied to recover the vector-valued bounds for the bilinear Hilbert transforms recently proved by Benea and Muscalu.
引用
收藏
页码:369 / 392
页数:24
相关论文
共 32 条
  • [1] [Anonymous], 2015, ARXIV150805639
  • [2] Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights
    Auscher, Pascal
    Martell, Jose Maria
    [J]. ADVANCES IN MATHEMATICS, 2007, 212 (01) : 225 - 276
  • [3] Benea C, 2017, T LOND MATH SOC, V4, P110, DOI 10.1112/tlm3.12005
  • [4] MULTIPLE VECTOR-VALUED INEQUALITIES VIA THE HELICOIDAL METHOD
    Benea, Cristina
    Muscalu, Camil
    [J]. ANALYSIS & PDE, 2016, 9 (08): : 1931 - 1988
  • [5] SHARP WEIGHTED NORM ESTIMATES BEYOND CALDERON-ZYGMUND THEORY
    Bernicot, Frederic
    Frey, Dorothee
    Petermichl, Stefanie
    [J]. ANALYSIS & PDE, 2016, 9 (05): : 1079 - 1113
  • [6] Chaffee L, 2017, APPL NUMER HARMON AN, P193, DOI 10.1007/978-3-319-52742-0_11
  • [7] A SPARSE DOMINATION PRINCIPLE FOR ROUGH SINGULAR INTEGRALS
    Conde-Alonso, Jose M.
    Culiuc, Amalia
    Di Plinio, Francesco
    Ou, Yumeng
    [J]. ANALYSIS & PDE, 2017, 10 (05): : 1255 - 1284
  • [8] A pointwise estimate for positive dyadic shifts and some applications
    Conde-Alonso, Jose M.
    Rey, Guillermo
    [J]. MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1111 - 1135
  • [9] Hoang C, 2018, INDIANA U MATH J, V67, P397
  • [10] Cruz-Uribe DV, 2011, OPER THEORY ADV APPL, V215, P3, DOI 10.1007/978-3-0348-0072-3