Quantum curves for the enumeration of ribbon graphs and hypermaps

被引:28
作者
Do, Norman [1 ]
Manescu, David [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
COUNTING LATTICE POINTS; HURWITZ NUMBERS; MODULI SPACES; INVARIANTS; TORUS;
D O I
10.4310/CNTP.2014.v8.n4.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The topological recursion of Eynard and Orantin governs a variety of problems in enumerative geometry and mathematical physics. The recursion uses the data of a spectral curve to define an infinite family of multidifferentials. It has been conjectured that, under certain conditions, the spectral curve possesses a non-commutative quantization whose associated differential operator annihilates the partition function for the spectral curve. In this paper, we determine the quantum curves and partition functions for an infinite sequence of enumerative problems involving generalizations of ribbon graphs known as hypermaps. These results give rise to an explicit conjecture relating hypermap enumeration to the topological recursion and we provide evidence to support this conjecture.
引用
收藏
页码:677 / 701
页数:25
相关论文
共 33 条
[1]  
Barkowski Dunin-P., 2012, ARXIV12114021MATHPH
[2]  
Barkowski Dunin-P., 2013, ARXIV13074729MATHAG
[3]  
Barkowski Dunin-P., 2013, ARXIV13125336MATHPH
[4]  
Borot G., 2012, ARXIV12052261MATHPH
[5]   A matrix model for simple Hurwitz numbers, and topological recursion [J].
Borot, Gaetan ;
Eynard, Bertrand ;
Mulase, Motohico ;
Safnuk, Brad .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (02) :522-540
[6]  
Bouchard V., 2012, ARXIV12112302MATHPH
[7]  
Bouchard V., 2013, ARXIV13014871MATHAG
[8]  
Bouchard V, 2008, P SYMP PURE MATH, V78, P263
[9]   Remodeling the B-Model [J].
Bouchard, Vincent ;
Klemm, Albrecht ;
Marino, Marcos ;
Pasquetti, Sara .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 287 (01) :117-178
[10]   Torus Knots and Mirror Symmetry [J].
Brini, Andrea ;
Eynard, Bertrand ;
Marino, Marcos .
ANNALES HENRI POINCARE, 2012, 13 (08) :1873-1910