Extreme inhomogeneity of multifractal wave functions at the Anderson transition

被引:0
作者
Bershadskii, A
机构
[1] P.O. Box 39953, Ramat-Aviv 61398, Tel-Aviv
关键词
D O I
10.1016/S0375-9601(98)00397-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A morphological phase transition to extremely inhomogeneous wave functions is studied using generalized scaling. Good agreement between this approach and results of numerical simulations of the Anderson transition performed by different authors is established. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:225 / 227
页数:3
相关论文
共 50 条
  • [41] Optimisation of multifractal analysis at the 3D Anderson transition using box-size scaling
    Rodriguez, A.
    Vasquez, L. J.
    Romer, R. A.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 67 (01) : 77 - 82
  • [42] MULTIFRACTAL FORMALISM FOR FUNCTIONS
    JAFFARD, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (08): : 745 - 750
  • [43] COULOMB WAVE FUNCTIONS IN THE TRANSITION REGION
    ABRAMOWITZ, M
    ANTOSIEWICZ, HA
    PHYSICAL REVIEW, 1954, 96 (01): : 75 - 77
  • [44] COULOMB WAVE FUNCTIONS IN THE TRANSITION REGION
    ABRAMOWITZ, M
    ANTOSIEWICZ, HA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (04) : 345 - 346
  • [45] Visualizing the multifractal wave functions of a disordered two-dimensional electron gas
    Jaeck, Berthold
    Zinser, Fabian
    Koenig, Elio J.
    Wissing, Sune N. P.
    Schmidt, Anke B.
    Donath, Markus
    Kern, Klaus
    Ast, Christian R.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [46] Anderson transitions: multifractal or non-multifractal statistics of the transmission as a function of the scattering geometry
    Monthus, Cecile
    Garel, Thomas
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
  • [47] BOUNDED AND UNBOUNDED DISTRIBUTION FUNCTIONS FOR EXTREME WAVE ANALYSIS
    Goda, Yoshimi
    Kudaka, Masanobu
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON ASIAN AND PACIFIC COASTS, VOL 3, 2010, : 8 - 14
  • [48] Bounded and unbounded distribution functions for extreme wave analysis
    ECOH Corporation, 2-6-4, Kita-Ueno, Taito-ku, Tokyo, 110-0014, Japan
    Proc. Int. Conf. Asian Pac. Coasts, APAC, (8-14):
  • [49] Wave functions of correlated-electron state in the periodic Anderson model
    Yanagisawa, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (03) : 893 - 902
  • [50] Scaling of critical wave functions at topological Anderson transitions in one dimension
    Quinn, Eoin
    Cope, Thomas
    Bardarson, Jens H.
    Ossipov, Alexander
    PHYSICAL REVIEW B, 2015, 92 (10):