A Lightweight Fully Convolutional Neural Network of High Accuracy Surface Defect Detection

被引:7
|
作者
Li, Yajie [1 ,2 ,3 ]
Chen, Yiqiang [1 ,2 ,3 ]
Gu, Yang [1 ,3 ]
Ouyang, Jianquan [2 ]
Wang, Jiwei [1 ,3 ]
Zeng, Ni [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Xiangtan Univ, Xiangtan 411105, Peoples R China
[3] Beijing Key Lab Mobile Comp & Pervas Device, Beijing 100190, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II | 2020年 / 12397卷
关键词
Surface defect detection; Convolutional neural network; Lightweight; VISUAL-SPATIAL ILLUSIONS; INSPECTION; SELECTION;
D O I
10.1007/978-3-030-61616-8_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surface defect detection is an indispensable step in the production process. Recent researches based on deep learning have paid primarily attention to improving accuracy. However, it is difficult to apply in real situation, because of huge number of parameters and the strict hardware requirements. In this paper, a lightweight fully convolutional neural network, named LFCSDD, is proposed. The parameters of our model are llx fewer than baselines at least, and obtain the accuracy of 99.72% and 98.74% on benchmark defect datasets, DAGM 2007 and KolektorSDD, respectively, outperforming all the baselines. In addition, our model can process the images with different sizes, which is verified on the RSDDs with the accuracy of 97.00%.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条
  • [1] An efficient lightweight convolutional neural network for industrial surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Wang, Dechen
    Qin, Chunbin
    Zhao, Bo
    Liang, Linlin
    Liu, Wei
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (09) : 10651 - 10677
  • [2] An efficient lightweight convolutional neural network for industrial surface defect detection
    Dehua Zhang
    Xinyuan Hao
    Dechen Wang
    Chunbin Qin
    Bo Zhao
    Linlin Liang
    Wei Liu
    Artificial Intelligence Review, 2023, 56 : 10651 - 10677
  • [3] A Weakly Supervised Surface Defect Detection Based on Convolutional Neural Network
    Xu, Liang
    Lv, Shuai
    Deng, Yong
    Li, Xiuxi
    IEEE ACCESS, 2020, 8 : 42285 - 42296
  • [4] A Rail Surface Defect Detection Method Based on Pyramid Feature and Lightweight Convolutional Neural Network
    Liu, Yu
    Xiao, Huaxi
    Xu, Jiaming
    Zhao, Jingyi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] A pixel-wise framework based on convolutional neural network for surface defect detection
    Dong, Guozhen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (09) : 8786 - 8803
  • [6] PCBNet: A Lightweight Convolutional Neural Network for Defect Inspection in Surface Mount Technology
    Wu, Hongjin
    Lei, Ruoshan
    Peng, Yibing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [7] Convolutional neural network in rice disease recognition: accuracy, speed and lightweight
    Ning, Hongwei
    Liu, Sheng
    Zhu, Qifei
    Zhou, Teng
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [8] Deep Learning Implementation using Convolutional Neural Network in Mangosteen Surface Defect Detection
    Azizah, Laila Ma'rifatul
    Umayah, Sitti Fadillah
    Riyadi, Slamet
    Damarjati, Cahya
    Utama, Nafi Ananda
    2017 7TH IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM, COMPUTING AND ENGINEERING (ICCSCE), 2017, : 242 - 246
  • [9] A novel deep convolutional neural network algorithm for surface defect detection
    Zhang, Dehua
    Hao, Xinyuan
    Liang, Linlin
    Liu, Wei
    Qin, Chunbin
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (05) : 1616 - 1632
  • [10] Convolutional Neural Network for Wafer Surface Defect Classification and the Detection of Unknown Defect Class
    Cheon, Sejune
    Lee, Hankang
    Kim, Chang Ouk
    Lee, Seok Hyung
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2019, 32 (02) : 163 - 170