共 50 条
Disruption of the Blood-Brain Barrier by Extracellular Vesicles From Preeclampsia Plasma and Hypoxic Placentae: Attenuation by Magnesium Sulfate
被引:24
|作者:
Leon, Jose
[1
,2
]
Acurio, Jesenia
[1
,3
]
Bergman, Lina
[4
,5
,6
]
Lopez, Juan
[1
]
Karin Wikstrom, Anna
[4
]
Torres-Vergara, Pablo
[3
,7
]
Troncoso, Felipe
[3
]
Castro, Fidel Ovidio
[8
]
Vatish, Manu
[9
]
Escudero, Carlos
[1
,3
]
机构:
[1] Univ Bio Bio, Dept Basic Sci, Vasc Physiol Lab, Chillan, Chile
[2] Univ Santo Tomas, Fac Salud, Escuela Enfermeria, Los Angeles, Chile
[3] Grp Res & Innovat Vasc Hlth, Chillan, Chile
[4] Uppsala Univ, Dept Womens & Childrens Hlth, Uppsala, Sweden
[5] Gothenburg Univ, Sahlgrenska Acad, Dept Clin Sci, Gothenburg, Sweden
[6] Stellenbosch Univ, Dept Obstet & Gynecol, Stellenbosch, South Africa
[7] Univ Concepcion, Fac Pharm, Dept Pharm, Concepcion, Chile
[8] Univ Concepcion, Fac Vet Sci, Dept Anim Sci, Chillan, Chile
[9] Univ Oxford, John Radcliffe Hosp, Womens Ctr, Nuffield Dept Womens & Reprod Hlth, Oxford, England
关键词:
blood-brain barrier;
exosomes;
extracellular vesicles;
placenta;
pregnancy;
ENDOTHELIAL GROWTH-FACTOR;
FUNCTIONAL RECOVERY;
PERMEABILITY ROLE;
EXOSOMES;
EXPRESSION;
WOMEN;
NEUROINFLAMMATION;
PLASTICITY;
MANAGEMENT;
MICRORNAS;
D O I:
10.1161/HYPERTENSIONAHA.121.17744
中图分类号:
R6 [外科学];
学科分类号:
1002 ;
100210 ;
摘要:
Preeclampsia, a pregnancy-related endothelial disorder, is associated with both cardiovascular and cerebrovascular complications. Preeclampsia requires the presence of a placenta as part of its pathophysiology, yet the role of this organ in the cerebrovascular complications remains unclear. Research has shown that circulating small extracellular vesicles (also known as exosomes) present in preeclampsia plasma can generate endothelial dysfunction, but it is unclear whether the impairment of function of brain endothelial cells at the blood-brain barrier is secondary to plasma-derived or placental-derived exosomes. In this study, we evaluated the effect of small extracellular vesicles isolated from plasma samples of women with preeclampsia (n=12) and women with normal pregnancy (n=11) as well as from human placental explants from normotensive pregnancies (n=6) subjected to hypoxia (1% oxygen) on the integrity of the blood-brain barrier, using both in vitro and animal models. Exposure of human-derived brain endothelial cell monolayers to plasma and plasma-derived small extracellular vesicles from preeclamptic pregnancies increased the permeability and reduced the transendothelial electrical resistance. A similar outcome was observed with hypoxic placental-derived small extracellular vesicles, which also increased the permeability to Evan's blue in the brain of C57BL6 nonpregnant mice. Cotreatment with magnesium sulfate reversed the effects elicited by plasma, plasma-derived, and hypoxic placental-derived small extracellular vesicles in the employed models. Thus, circulating small extracellular vesicles in plasma from women with preeclampsia or from hypoxic placentae disrupt the blood-brain barrier, which can be prevented using magnesium sulfate. These findings provide new insights into the pathophysiology of cerebral complications associated with preeclampsia.
引用
收藏
页码:1423 / 1433
页数:11
相关论文