Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine

被引:25
作者
Lenoir, Guillaume [1 ]
D'Ambrosio, Juan Martin [2 ]
Dieudonne, Thibaud [3 ]
Copic, Alenka [2 ]
机构
[1] Univ Paris Saclay, CNRS, Inst Integrat Biol Cell, CEA, Gif Sur Yvette, France
[2] Univ Montpellier, CNRS, Ctr Rech Biol Cellulaire Montpellier CRBM, Montpellier, France
[3] Aarhus Univ, Danish Res Inst Translat Neurosci DANDRITE, Dept Mol Biol & Genet, Nord EMBL Partnership Mol Med, Aarhus, Denmark
来源
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY | 2021年 / 9卷
关键词
phosphatidylserine; membrane asymmetry; lipid transfer protein; flippase; lipid scramblase; membrane contact site; lipid domain; budding yeast; P-TYPE ATPASE; PLASMA-MEMBRANE; ENDOPLASMIC-RETICULUM; PHOSPHATIDYLINOSITOL; 4-PHOSPHATE; SACCHAROMYCES-CEREVISIAE; TRANSBILAYER DISTRIBUTION; PHOSPHOLIPID FLIPPASE; LIPID TRANSFER; SUBCELLULAR MEMBRANES; BINDING PROTEINS;
D O I
10.3389/fcell.2021.737907
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Phosphatidylserine (PS) is a negatively charged phospholipid that displays a highly uneven distribution within cellular membranes, essential for establishment of cell polarity and other processes. In this review, we discuss how combined action of PS biosynthesis enzymes in the endoplasmic reticulum (ER), lipid transfer proteins (LTPs) acting within membrane contact sites (MCS) between the ER and other compartments, and lipid flippases and scramblases that mediate PS flip-flop between membrane leaflets controls the cellular distribution of PS. Enrichment of PS in specific compartments, in particular in the cytosolic leaflet of the plasma membrane (PM), requires input of energy, which can be supplied in the form of ATP or by phosphoinositides. Conversely, coupling between PS synthesis or degradation, PS flip-flop and PS transfer may enable PS transfer by passive flow. Such scenario is best documented by recent work on the formation of autophagosomes. The existence of lateral PS nanodomains, which is well-documented in the case of the PM and postulated for other compartments, can change the steepness or direction of PS gradients between compartments. Improvements in cellular imaging of lipids and membranes, lipidomic analysis of complex cellular samples, reconstitution of cellular lipid transport reactions and high-resolution structural data have greatly increased our understanding of cellular PS homeostasis. Our review also highlights how budding yeast has been instrumental for our understanding of the organization and transport of PS in cells.</p>
引用
收藏
页数:16
相关论文
共 200 条
[1]   MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria [J].
Aaltonen, Mari J. ;
Friedman, Jonathan R. ;
Osman, Christof ;
Salin, Benedicte ;
Di Rago, Jean-Paul ;
Nunnari, Jodi ;
Langer, Thomas ;
Tatsuta, Takashi .
JOURNAL OF CELL BIOLOGY, 2016, 213 (05) :525-534
[2]   Phospholipid ebb and flow makes mitochondria go [J].
Acoba, Michelle Grace ;
Senoo, Nanami ;
Claypool, Steven M. .
JOURNAL OF CELL BIOLOGY, 2020, 219 (08)
[3]   Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly [J].
AhYoung, Andrew P. ;
Jiang, Jiansen ;
Zhang, Jiang ;
Dang, Xuan Khoi ;
Loo, Joseph A. ;
Zhou, Z. Hong ;
Egea, Pascal F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (25) :7626-7626
[4]   Ser3p (Yer081wp) and Ser33p (Yil074cp) are phosphoglycerate dehydrogenases in Saccharomyces cerevisiae [J].
Albers, E ;
Laizé, V ;
Blomberg, A ;
Hohmann, S ;
Gustafsson, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10264-10272
[5]   Cryo-EM structures and functional characterization of the murine lipid scramblase TMEM16F [J].
Alvadia, Carolina ;
Lim, Novandy K. ;
Mosina, Vanessa Clerico ;
Oostergetel, Gert T. ;
Dutzler, Raimund ;
Paulino, Cristina .
ELIFE, 2019, 8
[6]   Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling [J].
Ariotti, Nicholas ;
Fernandez-Rojo, Manuel A. ;
Zhou, Yong ;
Hill, Michelle M. ;
Rodkey, Travis L. ;
Inder, Kerry L. ;
Tanner, Lukas B. ;
Wenk, Markus R. ;
Hancock, John F. ;
Parton, Robert G. .
JOURNAL OF CELL BIOLOGY, 2014, 204 (05) :777-792
[7]   High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions [J].
Azouaoui, Hassina ;
Montigny, Cedric ;
Dieudonne, Thibaud ;
Champeil, Philippe ;
Jacquot, Aurore ;
Vazquez-Ibar, Jose Luis ;
Le Marechal, Pierre ;
Ulstrup, Jakob ;
Ash, Miriam-Rose ;
Lyons, Joseph A. ;
Nissen, Poul ;
Lenoir, Guillaume .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (19) :7954-7970
[8]   Autoinhibition and activation mechanisms of the eukaryotic lipid flippase Drs2p-Cdc50p [J].
Bai, Lin ;
Kovach, Amanda ;
You, Qinglong ;
Hsu, Hao-Chi ;
Zhao, Gongpu ;
Li, Huilin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites [J].
Bean, Bjorn D. M. ;
Dziurdzik, Samantha K. ;
Kolehmainen, Kathleen L. ;
Fowler, Claire M. S. ;
Kwong, Waldan K. ;
Grad, Leslie I. ;
Davey, Michael ;
Schluter, Cayetana ;
Conibear, Elizabeth .
JOURNAL OF CELL BIOLOGY, 2018, 217 (10) :3593-3607
[10]  
Beh CT, 2001, GENETICS, V157, P1117