Undamaged Measurement of the Sub-Micron Diaphragm and Gap by Tri-Beam Interference

被引:3
作者
Chen, Yanping [1 ]
Liu, Shen [1 ]
Sun, Zhongyuan [1 ,2 ]
Zhang, Lin [2 ]
Sahoo, Namita [2 ]
Luo, Junxian [1 ]
Zhao, Yuanyuan [1 ]
Liao, Changrui [1 ]
Du, Bin [1 ]
Li, Chi [1 ]
Wang, Yiping [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Guangdong, Peoples R China
[2] Aston Univ, Aston Inst Photon Technol, Birmingham B4 7ET, W Midlands, England
基金
中国国家自然科学基金;
关键词
Diaphragm measurement; fiber optics communications; microgap measurement; tri-beam interference; PRESSURE SENSOR; FIBER; THICKNESS;
D O I
10.1109/JLT.2019.2940502
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A simple, high-accuracy and non-destructive method for the measurement of diaphragm thickness and microgap width based on modulated tri-beam interference is demonstrated. With this method, a theoretical estimation error less than 0.5% for a diaphragm thickness of similar to 1 mu m is achievable. Several fiber-tip air bubbles with different diaphragm thicknesses (6.25, 5.0, 2.5 and 1.25 mu m) were fabricated to verify our proposed measurement method. Furthermore, an improved technique was introduced by immersing the measured object into a liquid environment to simplify a four-beam interference into tri-beam one. By applying this improved technique, the diaphragm thickness of a fabricated in-fiber rectangular air bubble is measured to be about 1.47 mu m, and the averaged microgap width of a standard silica capillary is measured to be about 10.07 mu m, giving a corresponding measurement error only 1.27% compared with actual scanning electron microscope (SEM) results.
引用
收藏
页码:5840 / 5847
页数:8
相关论文
共 26 条
[1]   High Q silica microbubble resonators fabricated by arc discharge [J].
Berneschi, S. ;
Farnesi, D. ;
Cosi, F. ;
Conti, G. Nunzi ;
Pelli, S. ;
Righini, G. C. ;
Soria, S. .
OPTICS LETTERS, 2011, 36 (17) :3521-3523
[3]   Phase Space Distribution Near the Self-Excited Oscillation Threshold [J].
Dhayalan, Yuvaraj ;
Baskin, Ilya ;
Shlomi, Keren ;
Buks, Eyal .
PHYSICAL REVIEW LETTERS, 2014, 112 (21)
[4]   Fiber-cavity-based optomechanical device [J].
Flowers-Jacobs, N. E. ;
Hoch, S. W. ;
Sankey, J. C. ;
Kashkanova, A. ;
Jayich, A. M. ;
Deutsch, C. ;
Reichel, J. ;
Harris, J. G. E. .
APPLIED PHYSICS LETTERS, 2012, 101 (22)
[5]   Determining thickness of films on a curved substrate by use of ellipsometric measurements [J].
Han, Chien-Yuan ;
Lee, Zhen-You ;
Chao, Yu-Faye .
APPLIED OPTICS, 2009, 48 (17) :3139-3143
[6]   Tuning whispering gallery modes using internal aerostatic pressure [J].
Henze, Rico ;
Seifert, Tom ;
Ward, Jonathan ;
Benson, Oliver .
OPTICS LETTERS, 2011, 36 (23) :4536-4538
[7]   Simultaneous measurement of surface shape and variation in optical thickness of a transparent parallel plate in wavelength-scanning Fizeau interferometer [J].
Hibino, K ;
Oreb, BF ;
Fairman, PS ;
Burke, J .
APPLIED OPTICS, 2004, 43 (06) :1241-1249
[8]   Rolled-Up Optical Microcavities with Subwavelength Wall Thicknesses for Enhanced Liquid Sensing Applications [J].
Huang, Gaoshan ;
Quinones, Vladimir A. Bolanos ;
Ding, Fei ;
Kiravittaya, Suwit ;
Mei, Yongfeng ;
Schmidt, Oliver G. .
ACS NANO, 2010, 4 (06) :3123-3130
[9]   Dispersive optomechanics: a membrane inside a cavity [J].
Jayich, A. M. ;
Sankey, J. C. ;
Zwickl, B. M. ;
Yang, C. ;
Thompson, J. D. ;
Girvin, S. M. ;
Clerk, A. A. ;
Marquardt, F. ;
Harris, J. G. E. .
NEW JOURNAL OF PHYSICS, 2008, 10
[10]   Cavity optomechanics on a microfluidic resonator with water and viscous liquids [J].
Kim, Kyu Hyun ;
Bahl, Gaurav ;
Lee, Wonsuk ;
Liu, Jing ;
Tomes, Matthew ;
Fan, Xudong ;
Carmon, Tal .
LIGHT-SCIENCE & APPLICATIONS, 2013, 2 :e110-e110