Though destructive to network functions, insider attackers are not detectable with only the classic cryptography-based techniques. Many mission-critic sensor network applications demand an effective, light, flexible algorithm for internal adversary identification with only localized information available. The insider attacker detection scheme proposed in this paper meets all the requirements by exploring the spatial correlation existent among the networking behaviors of sensors in close proximity. Our work is exploratory in that the proposed algorithm considers multiple attributes simultaneously in node behavior evaluation, with no requirement on a prior knowledge about normal/malicious sensor activities. Moreover, it is application-friendly, which employs original measurements from sensors and can be employed to monitor many aspects of sensor networking behaviors. Our algorithm is purely localized, fitting well to the large-scale sensor networks. Simulation results indicate that internal adversaries can be identified with a high accuracy and a low false alarm rate when as many as 25% sensors are misbehaving.