Zeta functions of discrete groups acting on trees

被引:24
作者
Clair, B [1 ]
Mokhtari-Sharghi, S
机构
[1] CUNY, Grad Sch, New York, NY 10016 USA
[2] Long Isl Univ, Dept Math, Brooklyn, NY 11201 USA
关键词
zeta function; tree lattice; von Neumann algebra;
D O I
10.1006/jabr.2000.8600
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes Bass' work on zeta functions for uniform tree lattices. Using the theory of von Neumann algebras, machinery is developed to define the zeta function of a discrete group of automorphisms of a bounded degree tree. The main theorems relate the zeta function to determinants of operators defined on edges or vertices of the tree. A zeta function associated to a non-uniform tree lattice with appropriate Hilbert representation is defined. Zeta functions are defined for infinite graphs with a cocompact or finite covolume group action. (C) 2001 Academic Press.
引用
收藏
页码:591 / 620
页数:30
相关论文
共 14 条
[1]  
Atiyah M.F., 1976, ASTERISQUE, V32-33, P43
[2]  
Bass H., 1992, Int. J. Math., V3, P717, DOI DOI 10.1142/S0129167X92000357
[3]  
Bass H, 1990, J. Amer. Math. Soc., V3, P843
[4]   L2-COHOMOLOGY AND GROUP COHOMOLOGY [J].
CHEEGER, J ;
GROMOV, M .
TOPOLOGY, 1986, 25 (02) :189-215
[5]  
DIXMIER J, 1981, VONNEUMANN ALGEBRAS
[6]   DETERMINANT THEORY IN FINITE FACTORS [J].
FUGLEDE, B ;
KADISON, RV .
ANNALS OF MATHEMATICS, 1952, 55 (03) :520-530
[7]  
Hashimoto K., 1989, ADV STUDIES PURE MAT, V15
[8]  
Hashimoto Ki-ichiro, 1990, Internat. J. Math., V1, P381, DOI DOI 10.1142/S0129167X90000204
[9]  
IHARA T, 1968, P S PURE MATH AM MAT, V9, P272