Electrochemical conversion of CO2 to formic acid using a Sn based electrode: A critical review on the state-of-the-art technologies and their potential

被引:44
|
作者
Proietto, Federica [1 ]
Patel, Urvi [1 ]
Galia, Alessandro [1 ]
Scialdone, Onofrio [1 ]
机构
[1] Univ Palermo, Dipartimento Ingn, Viale Sci 6, I-90128 Palermo, Italy
关键词
CO2; reduction; Sn; Formic acid; GDE; Pressure; Stability; HIGH-PRESSURE CO2; GAS-DIFFUSION ELECTRODES; FIXED-BED REACTOR; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; TIN OXIDE; CURRENT-DENSITY; CONTINUOUS OPERATION; FARADAIC EFFICIENCY; METAL-ELECTRODES;
D O I
10.1016/j.electacta.2021.138753
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical conversion of carbon dioxide is considered one of the most promising strategies to convert waste-CO2 into value-added chemicals. This review focuses on the synthesis of formic acid/formate in aqueous electrolyte using Sn-based cathodes; this material is considered relatively cheap and shows promising results in terms of faradaic efficiency. In order to be suitable at an industrial scale, the process should present simultaneously high current densities, faradaic efficiencies close to 100%, high concentrations of formic acid and long-term stability. Analysing the main results reported in the literature, it was observed that to date further studies are necessary to achieve this outcome. Several strategies that can be used to overcome the main bottlenecks of the process were presented and critically reviewed. Finally, to evaluate the main factors that affect the scalability of the process on an industrial scale, a technical-economic overview was discussed. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Electrochemical conversion of CO2 to formic acid using a Sn based cathode: Combined effect of temperature and pressure
    Proietto, Federica
    Rinicella, Riccardo
    Galia, Alessandro
    Scialdone, Onofrio
    JOURNAL OF CO2 UTILIZATION, 2023, 67
  • [2] Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes
    Yang, Hongzhou
    Kaczur, Jerry J.
    Sajjad, Syed Dawar
    Masel, Richard I.
    JOURNAL OF CO2 UTILIZATION, 2017, 20 : 208 - 217
  • [3] Conversion of CO2 to formic acid in a microfluidic electrochemical cell with and without supporting electrolyte
    Proietto, Federica
    Miceli, Chiara
    Meli, Paola
    Galia, Alessandro
    Scialdone, Onofrio
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [4] Electrochemical CO2 conversion technologies: state-of-the-art and future perspectives
    Detz, Remko J.
    Ferchaud, Claire J.
    Kalkman, Arie J.
    Kemper, Jasmin
    Sanchez-Martinez, Carlos
    Saric, Marija
    Shinde, Manoj V.
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (23) : 5445 - 5472
  • [5] Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects
    Duarah, Prangan
    Haldar, Dibyajyoti
    Yadav, V. S. K.
    Purkait, Mihir Kumar
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06):
  • [6] Enhanced electrochemical conversion of CO2 into formic acid using PbSO4/ AtSn electrode: Catalyst synthesis and process optimization
    Arsalan, Muhammad
    Ewis, Dina
    Mahmud, Nafis
    Ba-Abbad, Muneer M.
    Khaled, Mazen
    El-Naas, Muftah H.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (06):
  • [7] Optimizing the Electrochemical Reduction of CO2 to Formate: A State-of-the-Art Analysis
    Philips, Matthew F.
    Gruter, Gert-Jan M.
    Koper, Marc T. M.
    Schouten, Klaas Jan P.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (41): : 15430 - 15444
  • [8] Towards the Electrochemical Conversion of CO2 to Formic Acid at an Applicative Scale: Technical and Economic Analysis of Most Promising Routes
    Proietto, Federica
    Galia, Alessandro
    Scialdone, Onofrio
    CHEMELECTROCHEM, 2021, 8 (12) : 2169 - 2179
  • [9] CO2 electrochemical reduction: A state-of-the-art review with economic and environmental analyses
    Leonzio, Grazia
    Hankin, Anna
    Shah, Nilay
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 208 : 934 - 955
  • [10] Efficient electrochemical conversion of CO2 into formic acid using colloidal NiCo@rGO catalyst
    Arsalan, Muhammad
    Ewis, Dina
    Ba-Abbad, Muneer M.
    Khaled, Mazen
    Amhamed, Abdulkarem
    El-Naas, Muftah H.
    RESULTS IN ENGINEERING, 2024, 21