Faithful group actions on rooted trees induced by actions of quotients

被引:3
作者
Lavrenyuk, Yaroslav
Mazorchuk, Volodymyr
Oliynyk, Andriy
Sushchansky, Vitaliy
机构
[1] Silesian Tech Univ, Inst Math, PL-44100 Gliwice, Poland
[2] Kyiv Taras Shevchenko Univ, Dept Mech & Math, Kiev, Ukraine
[3] Uppsala Univ, Dept Math, S-75238 Uppsala, Sweden
关键词
amalgamated free product; automorphisms of rooted tree; braid group; finite state; automata; rooted tree;
D O I
10.1080/00914030701410237
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop some new techniques of constructing (finite state) actions on rooted homogeneous trees and apply them to various groups. In particular we show that there is a faithful action of each amalgameted free product of the form Z * (Z) Z on a rooted homogeneous tree of finite degree, described by finite state automorphisms.
引用
收藏
页码:3759 / 3775
页数:17
相关论文
共 13 条
[1]  
BIRMAN JS, 1975, BRAIDS LINKS MAPPING, DOI DOI 10.1515/9781400881420
[2]   The generation of GL(n,Z) by finite state automata [J].
Brunner, AM ;
Sidki, S .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1998, 8 (01) :127-139
[3]   The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group [J].
Crisp, J ;
Paris, L .
INVENTIONES MATHEMATICAE, 2001, 145 (01) :19-36
[4]  
FALK M, 1988, CONT MATH, V78
[5]  
Gantmacher F.R., 2000, THEORY MATRICES, V2
[6]  
GRIGORCHUK R, 2000, SANTOY DAN SEGAL ANE, P121
[7]  
Grigorchuk R.I., 2000, P STEKLOV I MATH, V231, P134
[8]  
Magnus W., 2004, Combinatorial Group Theory
[9]  
Nekrashevych V., 2005, SELF SIMILAR GROUPS, V117
[10]  
OLIJNYK A, 1999, VOPROSY ALGEBRY, V14, P158