Cospectral regular graphs with and without a perfect matching

被引:10
作者
Blazsik, Zoltan L. [1 ]
Cummings, Jay [2 ]
Haemers, Willem H. [3 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, Budapest, Hungary
[2] Univ Calif San Diego, Dept Math, San Diego, CA 92103 USA
[3] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
关键词
Perfect matching; Cospectral graphs; Godsil-McKay switching;
D O I
10.1016/j.disc.2014.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each b >= 5 we construct a pair of cospectral b-regular graphs, where one has a perfect matching and the other one not. This solves a research problem posed by the third author at the 22nd British Combinatorial Conference. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:199 / 201
页数:3
相关论文
共 6 条
  • [1] Eigenvalues and perfect matchings
    Brouwer, AE
    Haemers, WH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 395 : 155 - 162
  • [2] Research problems from the BCC22
    Cameron, Peter J.
    [J]. DISCRETE MATHEMATICS, 2011, 311 (13) : 1074 - 1083
  • [3] Matchings in regular graphs from eigenvalues
    Cioaba, Sebastian M.
    Gregory, David A.
    Haemers, Willem H.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) : 287 - 297
  • [4] Godsil C.D., 1982, Aequ. Math., V25, P257, DOI DOI 10.1007/BF02189621
  • [5] Haemers W.H., 2009, SURVEYS COMBINATORIC, V365 of, P75
  • [6] Which graphs are determined by their spectrum?
    van Dam, ER
    Haemers, WH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 : 241 - 272