A sensor fusion based approach for bearing fault diagnosis of rotating machine

被引:30
|
作者
Mian, Tauheed [1 ]
Choudhary, Anurag [2 ]
Fatima, Shahab [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Automot Res & Tribol, 239,Block 5,IIT Campus, Delhi 110016, India
[2] Indian Inst Technol Delhi, Sch Interdisciplinary Res, Delhi, India
关键词
Hilbert transform; fault classification; neighborhood component analysis; relief algorithm; INTER-TURN FAULT; FEATURE-EXTRACTION; CLASSIFICATION; THERMOGRAPHY; NETWORK; NOISE;
D O I
10.1177/1748006X211044843
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis in rotating machines plays a vital role in various industries. Bearing is the essential element of rotating machines, and early fault detection can reduce the maintenance cost and enhance machine availability. In complex industrial machinery, a single sensor has a limitation to capture complete information about fault conditions. Hence, there is a need to involve multiple sensors to diagnose all possible fault conditions effectively. In such situations, an efficient fusion of information is required to develop a reliable fault diagnosis system. In this work, a feature fusion approach is implemented using two different sensors, that is, a contact type vibration sensor and a non-invasive thermal imaging camera. Hilbert transform is applied to decompose raw vibration and thermal image data, and subsequently, features are extracted and fused into a single feature vector. However, the features are fused in a concatenation manner, but this stage has high dimensionality. Neighborhood component analysis (NCA) is applied to reduce this high dimensionality of the feature vector, followed by a relief algorithm (RA) to compute the relevance level to find the optimal features. Finally, these optimal features are used as an input feature vector to the support vector machine (SVM) to classify the faults. The proposed approach resulted in considerably improved classification accuracy and detection quality than individual sensors. Also, the relevance of the proposed approach is proved by comparing its performance with other prevalent feature fusion techniques.
引用
收藏
页码:661 / 675
页数:15
相关论文
共 50 条
  • [31] Rolling bearing fault diagnosis method based on multi-sensor two-stage fusion
    Liu, Cang
    Tong, Jinyu
    Zheng, Jinde
    Pan, Haiyang
    Bao, Jiahan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (12)
  • [32] Experimental Vibration Data in Fault Diagnosis: A Machine Learning Approach to Robust Classification of Rotor and Bearing Defects in Rotating Machines
    Almutairi, Khalid M.
    Sinha, Jyoti K.
    MACHINES, 2023, 11 (10)
  • [33] A study on the fault diagnosis of rotating machine by machine learning
    Jeon, Hang-Kyu
    Kim, Ji-Sun
    Kim, Bong-Ju
    Kim, Won-Jin
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2020, 39 (04): : 263 - 269
  • [34] Fault Diagnosis of Bearing Based on Fuzzy Support Vector Machine
    Ma, Haodong
    Xiong, Yi
    Fang, Hongzheng
    Gu, Lichao
    2015 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM), 2015,
  • [35] Deep Learning Based Approach for Bearing Fault Diagnosis
    He, Miao
    He, David
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (03) : 3057 - 3065
  • [36] Fault diagnosis approach for rolling bearing based on support vector machine and soft morphological filters
    Yu, Xiangtao
    Chu, Fulei
    Hao, Rujiang
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009, 45 (07): : 75 - 80
  • [37] Hybrid Multi-model Feature Fusion-Based Vibration Monitoring for Rotating Machine Fault Diagnosis
    Jigyasu, Rajvardhan
    Shrivastava, Vivek
    Singh, Sachin
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (03) : 2791 - 2810
  • [38] Hybrid Multi-model Feature Fusion-Based Vibration Monitoring for Rotating Machine Fault Diagnosis
    Rajvardhan Jigyasu
    Vivek Shrivastava
    Sachin Singh
    Journal of Vibration Engineering & Technologies, 2024, 12 : 2791 - 2810
  • [39] A fault diagnosis method based on feature-level fusion of multi-sensor information for rotating machinery
    Gao, Tianyu
    Yang, Jingli
    Zhang, Baoqin
    Li, Yunlu
    Zhang, Huiyuan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (03)
  • [40] Fault Diagnosis Network for Rotating Machinery Based on Multiscale Feature Fusion
    Jiang, Xin
    Qian, Pengjiang
    Wang, Chuang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14863 : 44 - 55