A sensor fusion based approach for bearing fault diagnosis of rotating machine

被引:30
|
作者
Mian, Tauheed [1 ]
Choudhary, Anurag [2 ]
Fatima, Shahab [1 ]
机构
[1] Indian Inst Technol Delhi, Ctr Automot Res & Tribol, 239,Block 5,IIT Campus, Delhi 110016, India
[2] Indian Inst Technol Delhi, Sch Interdisciplinary Res, Delhi, India
关键词
Hilbert transform; fault classification; neighborhood component analysis; relief algorithm; INTER-TURN FAULT; FEATURE-EXTRACTION; CLASSIFICATION; THERMOGRAPHY; NETWORK; NOISE;
D O I
10.1177/1748006X211044843
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis in rotating machines plays a vital role in various industries. Bearing is the essential element of rotating machines, and early fault detection can reduce the maintenance cost and enhance machine availability. In complex industrial machinery, a single sensor has a limitation to capture complete information about fault conditions. Hence, there is a need to involve multiple sensors to diagnose all possible fault conditions effectively. In such situations, an efficient fusion of information is required to develop a reliable fault diagnosis system. In this work, a feature fusion approach is implemented using two different sensors, that is, a contact type vibration sensor and a non-invasive thermal imaging camera. Hilbert transform is applied to decompose raw vibration and thermal image data, and subsequently, features are extracted and fused into a single feature vector. However, the features are fused in a concatenation manner, but this stage has high dimensionality. Neighborhood component analysis (NCA) is applied to reduce this high dimensionality of the feature vector, followed by a relief algorithm (RA) to compute the relevance level to find the optimal features. Finally, these optimal features are used as an input feature vector to the support vector machine (SVM) to classify the faults. The proposed approach resulted in considerably improved classification accuracy and detection quality than individual sensors. Also, the relevance of the proposed approach is proved by comparing its performance with other prevalent feature fusion techniques.
引用
收藏
页码:661 / 675
页数:15
相关论文
共 50 条
  • [21] A fault diagnosis approach and it's application based on multi-sensor data fusion
    Wang, HF
    Wang, JP
    Xue, JJ
    SYSTEMS INTEGRITY AND MAINTENANCE, PROCEEDINGS, 2000, : 405 - 410
  • [22] Rotating Machine Fault Diagnosis Based on Denoising Source Separation
    Wang, Yuansheng
    Ren, Xingmin
    Nan, Guofang
    Yang, Yongfeng
    Deng, Wangqun
    2012 IEEE FIFTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2012, : 1124 - 1127
  • [23] A survey on fault diagnosis of rotating machinery based on machine learning
    Wang, Qi
    Huang, Rui
    Xiong, Jianbin
    Yang, Jianxiang
    Dong, Xiangjun
    Wu, Yipeng
    Wu, Yinbo
    Lu, Tiantian
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [24] Hybrid Multimodal Feature Fusion with Multi-Sensor for Bearing Fault Diagnosis
    Xu, Zhenzhong
    Chen, Xu
    Li, Yilin
    Xu, Jiangtao
    SENSORS, 2024, 24 (06)
  • [25] Fault Diagnosis of Rolling Bearing Based on Improved Data Fusion
    Qi Y.
    Bai Y.
    Gao S.
    Li Y.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (10): : 24 - 32
  • [26] Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
    Zhu, Huibin
    He, Zhangming
    Wei, Juhui
    Wang, Jiongqi
    Zhou, Haiyin
    SENSORS, 2021, 21 (07)
  • [27] Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
    Liu, Zhao-Hua
    Jiang, Lin-Bo
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [28] Optimal Transport-Based Deep Domain Adaptation Approach for Fault Diagnosis of Rotating Machine
    Liu, Zhao-Hua
    Jiang, Lin-Bo
    Wei, Hua-Liang
    Chen, Lei
    Li, Xiao-Hua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 13 - 13
  • [29] Bearing Fault Diagnosis Method Based on Multi-sensor Feature Fusion Convolutional Neural Network
    Zhong, Xiaoyong
    Song, Xiangjin
    Wang, Zhaowei
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT IV, 2022, 13458 : 138 - 149
  • [30] Aeroengine Bearing Fault Diagnosis Based on Convolutional Neural Network for Multi-sensor Information Fusion
    Yang J.
    Wan A.
    Wang J.
    Shan T.
    Miao X.
    Li K.
    Zuo Q.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2022, 42 (13): : 4933 - 4941