Isoperimetric problem for exponential measure on the plane with l1-metric

被引:0
作者
Strzelecka, Marta [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
Isoperimetric inequality; Exponential measure; Symmetrisation; DISTRIBUTIONS; SPACES;
D O I
10.1007/s11117-017-0476-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a solution to the isoperimetric problem for the exponential measure on the plane with the -metric. As it turns out, among all sets of a given measure, the simplex or its complement (i.e. the ball in the -metric or its complement) has the smallest boundary measure. The proof is based on a symmetrisation (along the sections of equal -distance from the origin).
引用
收藏
页码:1425 / 1438
页数:14
相关论文
共 13 条
[1]  
[Anonymous], 1978, Journal of Soviet Mathematics
[2]  
Bobkov S, 1996, ANN PROBAB, V24, P35
[3]   ISOPERIMETRIC-INEQUALITIES FOR DISTRIBUTION OF EXPONENTIAL-TYPE [J].
BOBKOV, SG .
ANNALS OF PROBABILITY, 1994, 22 (02) :978-994
[4]  
Bobkov SG, 1997, STUD MATH, V123, P81
[5]  
Bobkov SG, 1997, MEM AM MATH SOC, V129, P1
[6]   CONVEX MEASURES ON LOCALLY CONVEX-SPACES [J].
BORELL, C .
ARKIV FOR MATEMATIK, 1974, 12 (02) :239-252
[8]  
Harper LH., 1966, J COMBINATORIAL THEO, V1, P385, DOI DOI 10.1016/S0021-9800(66)80059-5
[9]  
Ledoux M., 2001, CONCENTRATION MEASUR, V89
[10]  
Levy P., 1951, Problemes Concrets d'Analyse Fonctionnelle