Numerical technique for integro-differential equations arising in oscillating magnetic fields

被引:0
|
作者
Ghasemi, M. [1 ]
机构
[1] Shahrekord Univ, Fac Math Sci, Dept Appl Math, Shahrekord, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2014年 / 38卷 / A4期
关键词
Integro-differential equation; Chebyshev wavelet; charged particle motion; oscillating magnetic field; SINE-COSINE WAVELETS; OPERATIONAL MATRIX; CHEBYSHEV WAVELETS; INTEGRATION; SYSTEMS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose the Chebyshev wavelet approximation for the numerical solution of a class of integro-differential equation which describes the charged particle motion for certain configurations of oscillating magnetic fields. We show that the Chebyshev approximation transform an integral equation to an explicit system of linear algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 50 条