Global well-posedness for the viscous shallow water system with Korteweg type

被引:0
作者
Li, Jinlu [1 ,2 ]
Yin, Zhaoyang [2 ,3 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
Viscous shallow water system; Korteweg type; global well-posedness; CAUCHY-PROBLEM; EXISTENCE; EQUATIONS;
D O I
10.1080/00036811.2017.1395861
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem for a viscous shallow water system with Korteweg type in Sobolev spaces. We first establish the local well-posedness of the solution by using the Friedrich method and compactness arguments. Then, we prove the global existence of the solution to the system for the small initial data.
引用
收藏
页码:2865 / 2879
页数:15
相关论文
共 19 条
[1]  
Bahouri Hajer, 2011, FOURIER ANAL NONLINE, V343
[2]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[3]   ON THE WELL-POSEDNESS FOR THE VISCOUS SHALLOW WATER EQUATIONS [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) :443-474
[4]  
Chen QL, 2010, REV MAT IBEROAM, V26, P915
[5]   Existence of solutions for compressible fluid models of Korteweg type [J].
Danchin, R ;
Desjardins, B .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (01) :97-133
[6]   A LAGRANGIAN APPROACH FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
Danchin, Raphael .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (02) :753-791
[7]   Well-posedness for the viscous rotating shallow water equations with friction terms [J].
Hao, Chengchun .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (02)
[8]   CAUCHY PROBLEM FOR VISCOUS SHALLOW WATER EQUATIONS WITH SURFACE TENSION [J].
Hao, Chengchun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (03) :593-608
[9]   Cauchy problem for viscous rotating shallow water equations [J].
Hao, Chengchun ;
Hsiao, Ling ;
Li, Hai-Liang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (12) :3234-3257
[10]   CAUCHY PROBLEM FOR VISCOUS SHALLOW WATER EQUATIONS WITH A TERM OF CAPILLARITY [J].
Haspot, Boris .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (07) :1049-1087