Feature Selection for Robust Backscatter DDoS Detection

被引:0
|
作者
Balkanli, Eray [1 ]
Zincir-Heywood, A. Nur [1 ]
Heywood, Malcolm I. [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
来源
2015 IEEE 40TH LOCAL COMPUTER NETWORKS CONFERENCE WORKSHOPS (LCN WORKSHOPS) | 2015年
关键词
DDoS; Backscatter; traffic analysis and classification;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
This paper analyzes the effect of using different feature selection algorithms for robust backscatter DDoS detection. To achieve this, we analyzed four different training sets with four different feature sets. We employed two well-known feature selection algorithms, namely Chi-Square and Symmetrical Uncertainty, together with the Decision Tree classifier. All the datasets employed are publicly available and provided by CAIDA. Our experimental results show that it is possible to develop a robust detection system that can generalize well to the changing backscatter DDoS behaviours over time using a small number of selected features.
引用
收藏
页码:611 / 618
页数:8
相关论文
共 50 条
  • [41] High-Throughput and Robust Rate Adaptation for Backscatter Networks
    Chen, Si
    Gong, Wei
    Zhao, Jia
    Liu, Jiangchuan
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2020, 28 (05) : 2120 - 2131
  • [42] A Signal-to-Data Translation Model for Robust Backscatter Communications
    Jeong, Singi
    Shin, Jaemin
    Kim, Yusung
    IEEE ACCESS, 2022, 10 : 27440 - 27452
  • [43] Rapid detection of infrared backscatter for standoff detection of trace explosives
    Breshike, Christopher J.
    Kendziora, Christopher A.
    Furstenberg, Robert
    Yoon, Yohan
    Huffman, T. J.
    Viet Nguyen
    McGill, R. Andrew
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XXI, 2020, 11416
  • [44] DDoS Attack Detection Using Matching Pursuit Algorithm
    Erhan, Derya
    Anarim, Emin
    Kurt, Gunes Karabulut
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1081 - 1084
  • [45] DDoS attack detection method using cluster analysis
    Lee, Keunsoo
    Kim, Juhyun
    Kwon, Ki Hoon
    Han, Younggoo
    Kim, Sehun
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (03) : 1659 - 1665
  • [46] Analysis and Detection of DDoS Attacks Targetting Virtualized Servers
    Ahmed, Nisar
    Sadhayo, Intesab Hussain
    Yousif, Zahid
    Naeem, Nadeem
    Parveen, Sajida
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (01): : 128 - 133
  • [47] Detection of DoS/DDoS attacks: the UBM and GMM approach
    Martinez Osorio, Jorge Steven
    Vergara Tejada, Jaime Alberto
    Botero Vega, Juan Felipe
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 866 - 871
  • [48] A lightweight DDoS detection scheme under SDN context
    Jia, Kun
    Liu, Chaoge
    Liu, Qixu
    Wang, Junnan
    Liu, Jiazhi
    Liu, Feng
    CYBERSECURITY, 2022, 5 (01)
  • [49] Detection strategies for post-pandemic DDoS profiles
    Orosz P.
    Nagy B.
    Varga P.
    Infocommunications Journal, 2023, 15 (04): : 26 - 39
  • [50] An hxtremely Lightweight Approach for DDoS Detection at Home Gateways
    Mendonca, Gabriel
    Santos, Gustavo H. A.
    Silva, Edmund de Souza e
    Leao, Rosa M. M.
    Menasche, Daniel S.
    Towsleyt, Don
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5012 - 5021