Process parameters optimization of friction stir processed Al 1050 aluminum alloy by response surface methodology (RSM)

被引:20
作者
Maboud, Ahmed Abdel Ghaffar Abdel [1 ]
El-Mahallawy, Nahed A. [1 ]
Zoalfakar, Said H. [2 ]
机构
[1] Ain Shams Univ, Fac Engn, Dept Design & Prod Engn, Cairo, Egypt
[2] HTI, Mech Engn Dept, 10th Ramadan City, Egypt
关键词
friction stir processing; response surface methodology; aluminum alloy; process parameters optimization; ANOVA; mechanical properties; MECHANICAL-PROPERTIES; MICROSTRUCTURE; COMPOSITE; EVOLUTION; METAL;
D O I
10.1088/2053-1591/aaed7c
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aluminum alloys are extensively used in many applications such as aerospace and defense industries because of the high strength-to weight ratio and good ductility. Friction stir processing (FSP) is a technique based on the principle of friction stir welding (FSW) to improve the mechanical properties. This work presents the formulation of a mathematical model with process parameters (rotational speed, feed rate, number of passes and tool shape) to predict the response or the mechanical properties of friction stir processed of 1050 aluminum alloy (yield strength, ultimate tensile strength, percentage elongation and microhardness). A central composite design with four factor, each factor with five levels was used and a response surface methodology was applied to develop the regression models to predict the responses. Method of analysis of variance ANOVA was applied to figureout the significant process parameters that have effect on the responses. These results point out that the friction stir processing of 1050 aluminum alloy with 1500 rpm rotational speed, 116 mm m(-1) feed rate, 3 FSP passes and square tool shape, have the maximum predicted responses using response surface methodology (RSM).
引用
收藏
页数:13
相关论文
共 37 条
  • [1] Microstructure and mechanical properties of Al/SiC composite surface layer produced by friction stir processing
    Abreu C.M.
    Acuña R.
    Cabeza M.
    Cristóbal M.J.
    Merino P.
    Verdera D.
    [J]. Acuña, R. (robertoacua@gmail.com), 1600, Elsevier B.V., Netherlands (29): : e82 - e86
  • [2] Determination of optimal gas forming conditions from free bulging tests at constant pressure
    Aksenov, S. A.
    Chumachenko, E. N.
    Kolesnikov, A. V.
    Osipov, S. A.
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 217 : 158 - 164
  • [3] Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al-12Si alloy
    Aktarer, S. M.
    Sekban, D. M.
    Saray, O.
    Kucukomeroglu, T.
    Ma, Z. Y.
    Purcek, G.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 636 : 311 - 319
  • [4] SUPERPLASTIC METAL FORMING
    ALNAIB, TYM
    DUNCAN, JL
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1970, 12 (06) : 463 - &
  • [5] [Anonymous], 2014, ADV FRICTION STIR WE
  • [6] Fabrication of Al/Al2Cu in situ nanocomposite via friction stir processing
    Azizieh, M.
    Iranparast, D.
    Dezfuli, M. A. G.
    Balak, Z.
    Kim, H. S.
    [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (04) : 779 - 788
  • [7] BARNES AJ, 1994, MATER SCI FORUM, V170-, P701, DOI 10.4028/www.scientific.net/MSF.170-172.701
  • [8] Bauri R, 2017, ISRN MAT SCI, V2013, P1
  • [9] Influence of multi-pass friction stir processing on microstructure and mechanical properties of 7B04-O Al alloy
    Chen, Yu
    Ding, Hua
    Malopheyev, S.
    Kaibyshev, R.
    Cai, Zhi-Hui
    Yang, Wen-Jing
    [J]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2017, 27 (04) : 789 - 796
  • [10] Microstructure and mechanical optimization of probeless friction stir spot welded joint of an Al-Li alloy
    Chu, Q.
    Li, W. Y.
    Yang, X. W.
    Shen, J. J.
    Vairis, A.
    Feng, W. Y.
    Wang, W. B.
    [J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2018, 34 (10) : 1739 - 1746