Epileptic EEG Identification via LBP Operators on Wavelet Coefficients

被引:40
作者
Yuan, Qi [1 ]
Zhou, Weidong [2 ]
Xu, Fangzhou [3 ]
Leng, Yan [1 ]
Wei, Dongmei [1 ]
机构
[1] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Med Phys & Image Proc Techn, Jinan 250014, Shandong, Peoples R China
[2] Shandong Univ, Sch Microelect, Jinan 250101, Shandong, Peoples R China
[3] Qilu Univ Technol, Sch Elect Engn & Automat, Jinan 250353, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Epileptic EEG; local binary pattern; wavelet; textural information; SEIZURE-DETECTION; NEURAL-NETWORK; AUTOMATIC IDENTIFICATION; FEATURE-EXTRACTION; CLASSIFICATION; SIGNALS; PREDICTION; MACHINE; ENTROPY; TRANSFORM;
D O I
10.1142/S0129065718500107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The automatic identification of epileptic electroencephalogram (EEG) signals can give assistance to doctors in diagnosis of epilepsy, and provide the higher security and quality of life for people with epilepsy. Feature extraction of EEG signals determines the performance of the whole recognition system. In this paper, a novel method using the local binary pattern (LBP) based on the wavelet transform (WT) is proposed to characterize the behavior of EEG activities. First, the WT is employed for time-frequency decomposition of EEG signals. After that, the "uniform" LBP operator is carried out on the wavelet-based time-frequency representation. And the generated histogram is regarded as EEG feature vector for the quantification of the textural information of its wavelet coefficients. The LBP features coupled with the support vector machine (SVM) classifier can yield the satisfactory recognition accuracies of 98.88% for interictal and ictal EEG classification and 98.92% for normal, interictal and ictal EEG classification on the publicly available EEG dataset. Moreover, the numerical results on another large size EEG dataset demonstrate that the proposed method can also effectively detect seizure events from multi-channel raw EEG data. Compared with the standard LBP, the "uniform" LBP can obtain the much shorter histogram which greatly reduces the computational burden of classification and enables it to detect ictal EEG signals in real time.
引用
收藏
页数:16
相关论文
共 82 条
[1]  
Acharya U. R., COMPUT BIOL MED
[2]   AUTOMATED DIAGNOSIS OF EPILEPSY USING CWT, HOS AND TEXTURE PARAMETERS [J].
Acharya, U. Rajendra ;
Yanti, Ratna ;
Wei, Zheng Jia ;
Krishnan, M. Muthu Rama ;
Hong, Tan Jen ;
Martis, Roshan Joy ;
Min, Lim Choo .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2013, 23 (03)
[3]   Automated diagnosis of epileptic EEG using entropies [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Chattopadhyay, Subhagata ;
Ng, Kwan-Hoong ;
Suri, Jasjit S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (04) :401-408
[4]   AUTOMATIC DETECTION OF EPILEPTIC EEG SIGNALS USING HIGHER ORDER CUMULANT FEATURES [J].
Acharya, U. Rajendra ;
Sree, S. Vinitha ;
Suri, Jasjit S. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (05) :403-414
[5]   APPLICATION OF RECURRENCE QUANTIFICATION ANALYSIS FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS [J].
Acharya, U. Rajendra ;
Sree, Vinitha S. ;
Chattopadhyay, Subhagata ;
Yu, Wenwei ;
Alvin, Ang Peng Chuan .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (03) :199-211
[6]  
ACHARYA UR, 2012, INT J NEURAL SYST, V22, DOI DOI 10.1142/S0129065712500025
[7]   Convolutional neural networks for real-time epileptic seizure detection [J].
Achilles, Felix ;
Tombari, Federico ;
Belagiannis, Vasileios ;
Loesch, Anna Mira ;
Noachtar, Soheyl ;
Navab, Nassir .
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03) :264-269
[8]   Analysis of EEG records in an epileptic patient using wavelet transform [J].
Adeli, H ;
Zhou, Z ;
Dadmehr, N .
JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) :69-87
[9]  
Adeli H, 2010, AUTOMATED EEG-BASED DIAGNOSIS OF NEUROLOGICAL DISORDERS: INVENTING THE FUTURE OF NEUROLOGY, P71
[10]   Analysis of the Complexity Measures in the EEG of Schizophrenia Patients [J].
Akar, S. Akdemir ;
Kara, S. ;
Latifoglu, F. ;
Bilgic, V. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2016, 26 (02)