Enhanced Systemic Anti-Angiogenic siVEGF Delivery Using PEGylated Oligo-D-arginine

被引:10
作者
Chung, Jee Young [1 ,2 ]
Ul Ain, Qurrat [1 ,2 ]
Lee, Hyun Lin [1 ]
Kim, So-Mi [1 ]
Kim, Yong-Hee [1 ,2 ]
机构
[1] Hanyang Univ, Inst Bioengn & Biopharmaceut Res, Dept Bioengn, 17 Haengdang Dong, Seoul 133791, South Korea
[2] Hanyang Univ, BK Plus Future Biopharmaceut Human Resources Trai, 17 Haengdang Dong, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
angiogenesis; enhanced permeability and enhanced effect; siVEGF delivery; PEGylation; antitumor therapy; SMALL-INTERFERING RNA; SIRNA DELIVERY; GENE DELIVERY; IN-VIVO; CANCER-THERAPY; PEPTIDE; NANOPARTICLES; CIRCULATION; POLYPLEXES; CARRIER;
D O I
10.1021/acs.molpharmaceut.7b00282
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Angiogenesis mainly mediated by upregulation of vascular endothelial growth factor (VEGF) provides a hallmark of rapidly proliferating tumor cells and an essential component of the tumor growth and microenvironment, making it a targetable process for antitumor therapy. RNA interference (RNAi) provides a very effective tool for developing antitumor therapies; however, its application to date has been hampered due to the lack of efficient small interfering RNA (siRNA) delivery systems in vivo. Here, we report a polymeric gene carrier system based on PEGylation of a cationic cysteine-ended 9-mer arginine oligopeptide (CR9C), which provides effective siRNA systemic delivery and specifically suppresses VEGF (siVEGF). The PEG500-CR9C/siVEGF oligopeptoplex provided improved blood circulation, enhanced protection from serum proteases, reduced uptake in the liver and kidneys, enhanced tumor targeting, and down-regulated intratumoral VEGF level, which comprehensively resulted in improved antitumor efficacy without significant toxicity in vivo. PEG500-CR9C has a great potential for safe and efficient siRNA delivery with diverse applications.
引用
收藏
页码:3059 / 3068
页数:10
相关论文
共 38 条
  • [1] Principles of nanoparticle design for overcoming biological barriers to drug delivery
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (09) : 941 - 951
  • [2] Magnetic nanoparticles and targeted drug delivering
    Chomoucka, Jana
    Drbohlavova, Jana
    Huska, Dalibor
    Adam, Vojtech
    Kizek, Rene
    Hubalek, Jaromir
    [J]. PHARMACOLOGICAL RESEARCH, 2010, 62 (02) : 144 - 149
  • [3] Dahlman JE, 2014, NAT NANOTECHNOL, V9, P648, DOI [10.1038/nnano.2014.84, 10.1038/NNANO.2014.84]
  • [4] Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles
    Davis, Mark E.
    Zuckerman, Jonathan E.
    Choi, Chung Hang J.
    Seligson, David
    Tolcher, Anthony
    Alabi, Christopher A.
    Yen, Yun
    Heidel, Jeremy D.
    Ribas, Antoni
    [J]. NATURE, 2010, 464 (7291) : 1067 - U140
  • [5] Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy
    Ferrara, N
    Hillan, KJ
    Novotny, W
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2005, 333 (02) : 328 - 335
  • [6] Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery
    Gary, Dana J.
    Puri, Nitin
    Won, You-Yeon
    [J]. JOURNAL OF CONTROLLED RELEASE, 2007, 121 (1-2) : 64 - 73
  • [7] Influence of Nano-Carrier Architecture on in Vitro siRNA Delivery Performance and in Vivo Biodistribution: Polyplexes vs Micelleplexes
    Gary, Dana J.
    Lee, Hoyoung
    Sharma, Rahul
    Lee, Jae-Sung
    Kim, Youngwook
    Cui, Zheng Yun
    Jia, Di
    Bowman, Valorie D.
    Chipman, Paul R.
    Wan, Lei
    Zou, Yi
    Mao, Guangzhao
    Park, Keunchil
    Herbert, Brittney-Shea
    Konieczny, Stephen F.
    Won, You-Yeon
    [J]. ACS NANO, 2011, 5 (05) : 3493 - 3505
  • [8] Suppression of Hepatic Inflammation via Systemic siRNA Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide Hybrid Nanoparticles
    He, Hua
    Zheng, Nan
    Song, Ziyuan
    Kim, Kyung Hoon
    Yao, Catherine
    Zhang, Rujing
    Zhang, Chenglin
    Huang, Yuhui
    Uckun, Fatih M.
    Cheng, Jianjun
    Zhang, Yanfeng
    Yin, Lichen
    [J]. ACS NANO, 2016, 10 (02) : 1859 - 1870
  • [9] Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma
    Hu-Lieskovan, S
    Heidel, JD
    Bartlett, DW
    Davis, ME
    Triche, TJ
    [J]. CANCER RESEARCH, 2005, 65 (19) : 8984 - 8992
  • [10] Tumor-Targeting and Microenvironment-Responsive Smart Nanoparticles for Combination Therapy of Antiangiogenesis and Apoptosis
    Huang, Shixian
    Shao, Kun
    Liu, Yang
    Kuang, Yuyang
    Li, Jianfeng
    An, Sal
    Guo, Yubo
    Ma, Haojun
    Jiang, Chen
    [J]. ACS NANO, 2013, 7 (03) : 2860 - 2871