Solvable potentials in pseudo-hermetic Dirac equation with PT symmetry

被引:2
作者
Soliemani, F. [1 ]
Bakhshi, Z. [1 ]
机构
[1] Shahed Univ, Fac Basic Sci, Dept Phys, Tehran, Iran
关键词
pseudo-Hermetic; PT symmetry; complex potentials; solvable potentials; Dirac equation; position-dependent effective mass; DEPENDENT EFFECTIVE-MASS; SCHRODINGER-EQUATION; QUANTUM-SYSTEMS; SUPERSYMMETRY; SCARF; EIGENVALUES; HERMITICITY; PARTICLES; OPERATORS; SPECTRUM;
D O I
10.1088/1402-4896/ac1e5b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents a general method to solve non-hermeticity potentials with PT (Parity-Time) symmetry using two first-order operators against eta-weak-pseudo-hermiticity having position-dependent effective mass. It futher suggests a way to apply this method to Dirac equation with spinor wave functions and non-hermetic potentials with real energy spectrum considering position-dependent effective mass. To show the utilities this method was apply to some superpotentials such as Eckart, Scarf-II, Rosen-Morse-II and Pochl-Teller. Finally, it was shown that the real potentials can be converted to complex potentials with eigenvalues of a class of eta-pseudo-hermeticity.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Exact solutions of the position-dependent-effective mass Schrodinger equation [J].
Abdalla, M. Sebawe ;
Eleuch, H. .
AIP ADVANCES, 2016, 6 (05)
[2]   Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential [J].
Ahmed, Z .
PHYSICS LETTERS A, 2001, 282 (06) :343-348
[3]  
Alvarez-Castillo DE, 2007, REV MEX FIS E, V53, P143
[4]   Exact Solutions of Schrodinger Equation for the Position-Dependent Effective Mass Harmonic Oscillator [J].
Amir, Naila ;
Iqbal, Shahid .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (06) :790-794
[5]   Temporally stable coherent states for infinite well and Poschl-Teller potentials [J].
Antoine, JP ;
Gazeau, JP ;
Monceau, P ;
Klauder, JR ;
Penson, KA .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (06) :2349-2387
[6]  
Bagchi BK., 2000, SUPERSYMMETRY QUANTU, P240
[7]   Mathematical Aspects of Quantum Systems with a Pseudo-Hermitian Hamiltonian [J].
Bebiano, N. ;
da Providencia, J. ;
da Providencia, J. P. .
BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (02) :152-156
[8]   Dual PT-symmetric quantum field theories [J].
Bender, CM ;
Jones, HF ;
Rivers, RJ .
PHYSICS LETTERS B, 2005, 625 (3-4) :333-340
[9]   PT-symmetric quantum mechanics [J].
Bender, CM ;
Boettcher, S ;
Meisinger, PN .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) :2201-2229
[10]   On the position-dependent effective mass Hamiltonian [J].
Biswas, Kalpana ;
Saha, Jyoti Prasad ;
Patra, Pinaki .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06)