Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions

被引:73
作者
Meng, Xin [1 ]
Pan, Hui [1 ]
Zhu, Chengling [1 ]
Chen, Zhixin [2 ]
Lu, Tao [1 ]
Xu, Da [1 ]
Li, Yao [1 ]
Zhu, Shenmin [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Univ Wollongong, Sch Mech Mat & Mechatron Engn, Wollongong, NSW 2522, Australia
基金
美国国家科学基金会; 国家重点研发计划;
关键词
graphene film; thermal conductivity; chiral structure; self-assembly; 3D conductive construction; LATERAL HEAT SPREADER; OXIDE-FILMS; MECHANICALLY STRONG; RAMAN-SPECTROSCOPY; CARBON NANOTUBES; X-RAY; PAPER; CELLULOSE; NANOSHEETS; TRANSPORT;
D O I
10.1021/acsami.8b05514
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m(-1) K-1) and through-plane (4.596 W m(-1) K-1) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 degrees C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm(-1). The strategy reported here may open a new avenue to the development of high-performance thermal management films.
引用
收藏
页码:22611 / 22622
页数:12
相关论文
共 55 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Annealing a graphene oxide film to produce a free standing high conductive graphene film [J].
Chen, Cheng-Meng ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Gong, Wen-Zhao ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang .
CARBON, 2012, 50 (02) :659-667
[4]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[5]   Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces [J].
Chen, Jie ;
Walther, Jens H. ;
Koumoutsakos, Petros .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (48) :7539-7545
[6]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[7]   An ultrahigh thermal conductive graphene flexible paper [J].
Ding, Jiheng ;
Zhao, Hongran ;
Wang, Qiaolei ;
Dou, Huimin ;
Chen, Hao ;
Yu, Haibin .
NANOSCALE, 2017, 9 (43) :16871-16878
[8]   Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy [J].
Dresselhaus, Mildred S. ;
Jorio, Ado ;
Hofmann, Mario ;
Dresselhaus, Gene ;
Saito, Riichiro .
NANO LETTERS, 2010, 10 (03) :751-758
[9]   Wet Chemical Synthesis of Graphene [J].
Eigler, Siegfried ;
Enzelberger-Heim, Michael ;
Grimm, Stefan ;
Hofmann, Philipp ;
Kroener, Wolfgang ;
Geworski, Andreas ;
Dotzer, Christoph ;
Roeckert, Michael ;
Xiao, Jie ;
Papp, Christian ;
Lytken, Ole ;
Steinrueck, Hans-Peter ;
Mueller, Paul ;
Hirsch, Andreas .
ADVANCED MATERIALS, 2013, 25 (26) :3583-3587
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191