URBAN AREAS CHARACTERIZATION FROM POLARIMETRIC SAR IMAGES USING HIDDEN MARKOV MODEL

被引:0
|
作者
He, Wenju [1 ]
Jaeger, Marc [1 ]
Hellwich, Olaf [1 ]
机构
[1] Berlin Univ Technol, Berlin, Germany
关键词
Hidden Markov Models; Synthetic aperture radar; Buildings; Subaperture;
D O I
10.1109/IGARSS.2009.5417397
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Scatterers in Synthetic Aperture Radar (SAR) images exhibit high dependence on scatterer-sensor orientations. This phenomenon is prevalent in urban areas This paper applies Hidden Markov Model (HMM) to characterize the dependence and model the variations with respect to orientation. Buildings in high resolution SAR images of urban areas are studied. Buildings regions are divided into several discrete classes according to their orientation angles. We model the variations of scatterers characteristics throughout the subapertures using HMM. Subapertures are generated using wavelet packet decomposition. The experimental results show that HMM is efficient in building detection and orientation angle identification. HMMs trained using different feature sets are investigated The evolution of scatterer states in subapertures are obtained from the HMM inference.
引用
收藏
页码:2778 / 2781
页数:4
相关论文
共 50 条
  • [31] COMPARISON OF URBAN AREAS EXTRACTED BY USING L-BAND AND X-BAND FULLY POLARIMETRIC SAR IMAGES
    Susaki, Junichi
    Kishimoto, Masaaki
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1171 - 1174
  • [32] Unsupervised change detection on SAR images using fuzzy hidden Markov chains
    Carincotte, C
    Derrode, S
    Bourennane, S
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (02): : 432 - 441
  • [33] THREE-DIMENSIONAL URBAN CHARACTERIZATION USING POLARIMETRIC SAR CORRELATION TOMOGRAPHIC TECHNIQUES AND TSX/TDX IMAGES
    Peng, Xing
    Huang, Yue
    Ferro-Famil, Laurent
    Zhu, Jianjun
    Du, Yanan
    Fu, Haiqiang
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4924 - 4926
  • [34] Online Random Forests for Urban Area Classification from Polarimetric SAR Images
    Haensch, Ronny
    Hellwich, Olaf
    2019 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2019,
  • [35] Initialization of Markov Random Field clustering of large polarimetric SAR images
    Hoekman, DH
    Wehrens, R
    Buydens, LMC
    Hoekman, DH
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 714 - 717
  • [36] Segmentation of objects in temporal images using the hidden Markov model
    Solomon, J
    Butman, JA
    Sood, A
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 585 - 588
  • [37] Polarimetric SAR image analysis using model fit for urban structures
    Moriyama, T
    Uratsuka, S
    Umehara, T
    Maeno, H
    Satake, M
    Nadai, A
    Nakamura, K
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2005, E88B (03) : 1234 - 1243
  • [38] Measurement of topography using polarimetric SAR images
    Schuler, DL
    Lee, JS
    DeGrandi, G
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1996, 34 (05): : 1266 - 1277
  • [39] Speckle reduction of SAR images using wavelet-domain hidden Markov models
    Sveinsson, JR
    Benediktsson, JA
    IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1666 - 1668
  • [40] Phase-difference of urban area in polarimetric SAR images
    Lee, K. -Y.
    Oh, Y.
    Kim, Y.
    ELECTRONICS LETTERS, 2012, 48 (21) : 1367 - 1368