Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two

被引:31
作者
Goodearl, K. R. [1 ]
Zhang, J. J. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Hopf algebra; Noetherian; Gelfand-Kirillov dimension; QUANTUM GROUPS;
D O I
10.1016/j.jalgebra.2009.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify all noetherian Hopf algebras H over an algebraically closed field k of characteristic zero which are integral domains of Gelfand-Kirillov dimension two and satisfy the condition Ext(H)(1)(k,k) not equal 0. The latter condition is conjecturally redundant, as no examples are known (among noetherian Hopf algebra domains of GK-dimension two) where it fails. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3131 / 3168
页数:38
相关论文
共 26 条
  • [1] ALAMELU S, 1978, J INDIAN MATH SOC, V42, P203
  • [2] Andruskiewitsch N, 2004, J REINE ANGEW MATH, V577, P81
  • [3] On Nichols algebras with generic braiding
    Andruskiewitsch, Nicolas
    Angiono, Ivan Ezequiel
    [J]. MODULES AND COMODULES, 2008, : 47 - 64
  • [4] GRADED ALGEBRAS OF GLOBAL DIMENSION-3
    ARTIN, M
    SCHELTER, WF
    [J]. ADVANCES IN MATHEMATICS, 1987, 66 (02) : 171 - 216
  • [5] NONCOMMUTATIVE GRADED DOMAINS WITH QUADRATIC GROWTH
    ARTIN, M
    STAFFORD, JT
    [J]. INVENTIONES MATHEMATICAE, 1995, 122 (02) : 231 - 276
  • [6] Borel Armand, 2012, Linear Algebraic Groups, V126
  • [7] BROWN K, 2002, AD CO MATH, pR7
  • [8] Homological aspects of Noetherian PI Hopf algebras and irreducible modules of maximal dimension
    Brown, KA
    Goodearl, KR
    [J]. JOURNAL OF ALGEBRA, 1997, 198 (01) : 240 - 265
  • [9] BROWN KA, P LONDON MA IN PRESS
  • [10] Brown KA, 2007, TURK J MATH, V31, P7