Nonlinear gyrokinetic theory with polarization drift

被引:23
作者
Wang, Lu [1 ,2 ,3 ]
Hahm, T. S. [3 ]
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
[2] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[3] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
关键词
ZONAL FLOWS; EQUATIONS; PLASMA; WAVES;
D O I
10.1063/1.3467498
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A set of the electrostatic toroidal gyrokinetic Vlasov equation and the Poisson equation, which explicitly includes the polarization drift, is derived systematically by using Lie-transform perturbation method. The polarization drift is introduced in the gyrocenter equations of motion, and the corresponding polarization density is derived. Contrary to the widespread expectation, the inclusion of the polarization drift in the gyrocenter equations of motion does not affect the expression for the polarization density significantly. This is due to modification of the gyrocenter phase-space volume caused by the electrostatic potential [T. S. Hahm, Phys. Plasmas 3, 4658 (1996)]. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3467498]
引用
收藏
页数:8
相关论文
共 28 条
[1]   NONLINEAR GYROKINETIC MAXWELL-VLASOV EQUATIONS USING MAGNETIC COORDINATES [J].
BRIZARD, A .
JOURNAL OF PLASMA PHYSICS, 1989, 41 :541-559
[2]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[3]   NONLINEAR GYROKINETIC VLASOV EQUATION FOR TOROIDALLY ROTATING AXISYMMETRICAL TOKAMAKS [J].
BRIZARD, AJ .
PHYSICS OF PLASMAS, 1995, 2 (02) :459-471
[4]   Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICS OF PLASMAS, 2000, 7 (12) :4816-4822
[5]   Exact energy conservation laws for full and truncated nonlinear gyrokinetic equations [J].
Brizard, Alain J. .
PHYSICS OF PLASMAS, 2010, 17 (04)
[6]   LINEARIZED GYRO-KINETICS [J].
CATTO, PJ .
PLASMA PHYSICS AND CONTROLLED FUSION, 1978, 20 (07) :719-722
[7]  
CHANG CH, COMMUNICATION
[8]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[9]   Gyrokinetic equations in an extended ordering [J].
Dimits, Andris M. .
PHYSICS OF PLASMAS, 2010, 17 (05)
[10]   NON-LINEAR GYROKINETIC EQUATIONS [J].
DUBIN, DHE ;
KROMMES, JA ;
OBERMAN, C ;
LEE, WW .
PHYSICS OF FLUIDS, 1983, 26 (12) :3524-3535