An addendum to Krein's formula

被引:43
|
作者
Gesztesy, F [1 ]
Makarov, KA [1 ]
Tsekanovskii, E [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jmaa.1998.5948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide additional results in connection with Krein's formula, which describes the resolvent difference of two self-adjoint extensions A(1) and A(2) of a densely defined closed symmetric linear operator k with deficiency indices (n, n), n is an element of boolean OR{infinity}. In particular, we explicitly derive the linear fractional transformation relating the operator-valued Weyl-Titchmarsh M-functions M-1(z) and M-2(z) corresponding to A(1) and A(2). (C) 1998 Academic Press.
引用
收藏
页码:594 / 606
页数:13
相关论文
共 50 条
  • [31] The Birman-Krein formula for differential forms and electromagnetic scattering
    Strohmaier, Alexander
    Waters, Alden
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 179
  • [32] The Krein formula for generalized resolvents in degenerated inner product spaces
    Kaltenbäck, M
    Woracek, H
    MONATSHEFTE FUR MATHEMATIK, 1999, 127 (02): : 119 - 140
  • [33] BOUNDARY DATA MAPS AND KREIN'S RESOLVENT FORMULA FOR STURM-LIOUVILLE OPERATORS ON A FINITE INTERVAL
    Clark, Stephen
    Gesztesy, Fritz
    Nichols, Roger
    Zinchenko, Maxim
    OPERATORS AND MATRICES, 2014, 8 (01): : 1 - 71
  • [34] THE LIFSHITZ-KREIN TRACE FORMULA AND OPERATOR LIPSCHITZ FUNCTIONS
    Peller, V. V.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (12) : 5207 - 5215
  • [35] Analog of the Krein formula for resolvents of normal extensions of a prenormal operator
    Dudkin M.E.
    Ukrainian Mathematical Journal, 2002, 54 (4) : 684 - 692
  • [36] The Krein Formula for Generalized Resolvents in Degenerated Inner Product Spaces
    Michael Kaltenbäck
    Harald Woracek
    Monatshefte für Mathematik, 1999, 127 : 119 - 140
  • [37] Remarks on Krein's Inequality
    Lin, Minghua
    MATHEMATICAL INTELLIGENCER, 2012, 34 (01): : 3 - 4
  • [38] Compressions of Self-Adjoint Extensions of a Symmetric Operator and M.G. Krein’s Resolvent Formula
    Aad Dijksma
    Heinz Langer
    Integral Equations and Operator Theory, 2018, 90
  • [39] Modified Krein Formula and Analytic Perturbation Procedure for Scattering on Arbitrary Junction
    Adamyan, V.
    Pavlov, B.
    Yafyasov, A.
    MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 1: OPERATOR THEORY AND RELATED TOPICS, 2009, 190 : 3 - +
  • [40] GENERALIZED KREIN FORMULA, DETERMINANTS, AND SELBERG ZETA FUNCTION IN EVEN DIMENSION
    Guillarmou, Colln
    AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (05) : 1359 - 1417