An addendum to Krein's formula

被引:43
|
作者
Gesztesy, F [1 ]
Makarov, KA [1 ]
Tsekanovskii, E [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jmaa.1998.5948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide additional results in connection with Krein's formula, which describes the resolvent difference of two self-adjoint extensions A(1) and A(2) of a densely defined closed symmetric linear operator k with deficiency indices (n, n), n is an element of boolean OR{infinity}. In particular, we explicitly derive the linear fractional transformation relating the operator-valued Weyl-Titchmarsh M-functions M-1(z) and M-2(z) corresponding to A(1) and A(2). (C) 1998 Academic Press.
引用
收藏
页码:594 / 606
页数:13
相关论文
共 50 条
  • [1] On Krein's formula
    Behrndt, Jussi
    de Snoo, Henk
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) : 567 - 578
  • [2] Remark on the Compensation of Singularities in Krein's Formula
    Mikhailova, A. B.
    Pavlov, B. S.
    METHODS OF SPECTRAL ANALYSIS IN MATHEMATICAL PHYSICS, 2009, 186 : 325 - +
  • [3] Krein's resolvent formula and perturbation theory
    Kurasov, P
    Kuroda, ST
    JOURNAL OF OPERATOR THEORY, 2004, 51 (02) : 321 - 334
  • [4] On Krein's formula in indefinite metric spaces
    Belyi, S
    Tsekanovskii, E
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 389 : 305 - 322
  • [5] Few-body Krein's formula
    Kurasov, P
    Pavlov, B
    OPERATOR THEORY AND RELATED TOPICS, 2000, 118 : 225 - 254
  • [6] A remark on Krein's resolvent formula and boundary conditions
    Albeverio, S
    Pankrashkin, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (22): : 4859 - 4864
  • [7] GENERALIZATION OF A FORMULA OF BELLMAN AND KREIN
    GOLBERG, MA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (03) : 513 - 521
  • [8] Krein's formula for indefinite multipliers in linear periodic Hamiltonian systems
    Kuwamura, Masataka
    Yanagida, Eiji
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) : 446 - 464
  • [9] Krein Formula and S-Matrix for Euclidean Surfaces with Conical Singularities
    Hillairet, Luc
    Kokotov, Alexey
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) : 1498 - 1529
  • [10] Krein’s trace formula for unitary operators and operator Lipschitz functions
    A. B. Aleksandrov
    V. V. Peller
    Functional Analysis and Its Applications, 2016, 50 : 167 - 175