Lattice-Boltzmann hydrodynamics on parallel systems

被引:100
|
作者
Kandhai, D
Koponen, A
Hoekstra, AG
Kataja, M
Timonen, J
Sloot, PMA
机构
[1] Univ Amsterdam, Fac Math Comp Sci Phys & Astron, NL-1098 SJ Amsterdam, Netherlands
[2] Univ Jyvaskyla, Dept Phys, SF-40351 Jyvaskyla, Finland
关键词
high performance simulation; load balancing; lattice-Boltzmann method;
D O I
10.1016/S0010-4655(98)00025-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Realistic lattice-Boltzmann simulations often require large amounts of computational resources and are therefore executed on parallel systems. Generally, parallelization is based on one- and two-dimensional decomposition of the computational grid in equal subvolumes, and load balancing is completely ignored for simplicity. Besides reviewing the existing parallelization strategies we report here a new approach based on the Orthogonal Recursive Bisection (ORB) method. To illustrate the different decomposition methods, two realistic applications were simulated, namely fluid flow in random fibre networks and flow in a centrifugal elutriation chamber, For heterogeneously distributed workloads, the ORE method is found to be 12 to 60% more efficient compared to traditional parallelization strategies. It is shown that high parallel efficiencies can be obtained for both homogeneously and heterogeneously distributed workloads, thus supporting efficient simulations of a variety of realistic systems, (C) 1998 Elsevier Science B.V.
引用
收藏
页码:14 / 26
页数:13
相关论文
共 50 条
  • [1] Lattice-Boltzmann modeling of phonon hydrodynamics
    Jiaung, Wen-Shu
    Ho, Jeng-Rong
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [2] Lattice-Boltzmann hydrodynamics of anisotropic active matter
    de Graaf, Joost
    Menke, Henri
    Mathijssen, Arnold J. T. M.
    Fabritius, Marc
    Holm, Christian
    Shendruk, Tyler N.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (13):
  • [3] Benchmarking GPUs with a parallel Lattice-Boltzmann code
    Kraus, Jiri
    Pivanti, Marcello
    Schifano, Sebastiano Fabio
    Tripiccione, Raffaele
    Zanella, Marco
    2013 25TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD), 2013, : 160 - 167
  • [4] Lattice-Boltzmann model of amphiphilic systems
    Theissen, O
    Gompper, G
    Kroll, DM
    EUROPHYSICS LETTERS, 1998, 42 (04): : 419 - 424
  • [5] An improved hydrodynamics formulation for multiphase flow lattice-Boltzmann models
    Holdych, DJ
    Rovas, D
    Georgiadis, JG
    Buckius, RO
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (08): : 1393 - 1404
  • [6] LUDWIG: A parallel Lattice-Boltzmann code for complex fluids
    Desplat, JC
    Pagonabarraga, I
    Bladon, P
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 134 (03) : 273 - 290
  • [7] LATTICE-BOLTZMANN MODELING OF MULTICOMPONENT SYSTEMS: AN INTRODUCTION
    Schiller, Ulf D.
    Kuksenok, Olga
    REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 31, 2019, 31 : 1 - 61
  • [8] Parallel fluid flow simulations by means of a lattice-Boltzmann scheme
    Derksen, JJ
    Kooman, JL
    van den Akker, HEA
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1997, 1225 : 524 - 530
  • [9] Massively parallel lattice-Boltzmann codes on large GPU clusters
    Calore, E.
    Gabbana, A.
    Kraus, J.
    Pellegrini, E.
    Schifano, S. F.
    Tripiccione, R.
    PARALLEL COMPUTING, 2016, 58 : 1 - 24
  • [10] Massively parallel lattice-Boltzmann simulation of turbulent channel flow
    Amati, G
    Succi, S
    Piva, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1997, 8 (04): : 869 - 877