Data-Driven Structural Design Optimization for Petal-Shaped Auxetics Using Isogeometric Analysis

被引:48
作者
Wang, Yingjun [1 ]
Liao, Zhongyuan [1 ]
Shi, Shengyu [1 ]
Wang, Zhenpei [2 ]
Poh, Leong Hien [3 ]
机构
[1] South China Univ Technol, Guangdong Prov Key Lab Tech & Equipment Macromol, Minist Educ, Key Lab Polymer Proc Engn,Natl Engn Res Ctr Novel, Guangzhou 510641, Guangdong, Peoples R China
[2] ASTAR, IHPC, 1 Fusionopolis Way, Singapore 138632, Singapore
[3] Natl Univ Singapore, Dept Civil & Environm Engn, 1 Engn Dr 2,E1A 07-03, Singapore 117576, Singapore
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2020年 / 122卷 / 02期
基金
中国国家自然科学基金;
关键词
Data-driven; BP neural network; petal-shaped auxetics; negative Poisson's ratio; structural design; isogeometric analysis; DEEP MATERIAL NETWORK; TOPOLOGY OPTIMIZATION; POISSONS-RATIO; COMPUTATIONAL HOMOGENIZATION; COMPOSITE STRUCTURES; NEURAL NETWORKS; 3D ELASTICITY; BACKPROPAGATION; ARCHITECTURES; MODEL;
D O I
10.32604/cmes.2020.08680
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Focusing on the structural optimization of auxetic materials using data-driven methods, a back-propagation neural network (BPNN) based design framework is developed for petal-shaped auxetics using isogeometric analysis. Adopting a NURBS-based parametric modelling scheme with a small number of design variables, the highly nonlinear relation between the input geometry variables and the effective material properties is obtained using BPNN-based fitting method, and demonstrated in this work to give high accuracy and efficiency. Such BPNN-based fitting functions also enable an easy analytical sensitivity analysis, in contrast to the generally complex procedures of typical shape and size sensitivity approaches.
引用
收藏
页码:433 / 458
页数:26
相关论文
共 77 条
  • [1] Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
    Akhtar, Naveed
    Mian, Ajmal
    [J]. IEEE ACCESS, 2018, 6 : 14410 - 14430
  • [2] Auxetic materials
    Alderson, A.
    Alderson, K. L.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2007, 221 (G4) : 565 - 575
  • [3] Artificial neural networks: fundamentals, computing, design, and application
    Basheer, IA
    Hajmeer, M
    [J]. JOURNAL OF MICROBIOLOGICAL METHODS, 2000, 43 (01) : 3 - 31
  • [4] Isogeometric shell analysis: The Reissner-Mindlin shell
    Benson, D. J.
    Bazilevs, Y.
    Hsu, M. C.
    Hughes, T. J. R.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 276 - 289
  • [5] A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality
    Bessa, M. A.
    Bostanabad, R.
    Liu, Z.
    Hu, A.
    Apley, Daniel W.
    Brinson, C.
    Chen, W.
    Liu, Wing Kam
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 : 633 - 667
  • [6] Large-Scale Machine Learning with Stochastic Gradient Descent
    Bottou, Leon
    [J]. COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, : 177 - 186
  • [7] Isogeometric configuration design optimization of shape memory polymer curved beam structures for extremal negative Poisson's ratio
    Choi, Myung-Jin
    Cho, Seonho
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2018, 58 (05) : 1861 - 1883
  • [8] Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations
    Clausen, Anders
    Wang, Fengwen
    Jensen, Jakob S.
    Sigmund, Ole
    Lewis, Jennifer A.
    [J]. ADVANCED MATERIALS, 2015, 27 (37) : 5523 - 5527
  • [9] Collobert R., 2008, P 25 INT C MACH LEAR, P160, DOI DOI 10.1145/1390156.1390177
  • [10] Collobert R, 2011, J MACH LEARN RES, V12, P2493