Vector-valued generalized Ornstein-Uhlenbeck processes: Properties and parameter estimation

被引:6
|
作者
Voutilainen, Marko [1 ,2 ]
Viitasaari, Lauri [3 ]
Ilmonen, Pauliina [2 ]
Torres, Soledad [4 ]
Tudor, Ciprian [5 ]
机构
[1] Turku Sch Econ & Business Adm, Dept Accounting & Finance, Turku, Finland
[2] Aalto Univ Sch Sci, Dept Math & Syst Anal, Espoo, Finland
[3] Aalto Univ, Dept Informat & Serv Management, Sch Business, Espoo, Finland
[4] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[5] Univ Lille 1, UFR Math, Lille, France
关键词
algebraic Riccati equations; consistency; Langevin equation; multivariate Ornstein-Uhlenbeck process; nonparametric estimation; stationary processes; LANGEVIN EQUATION; RICCATI EQUATION; DRIVEN; STATIONARY; MODELS;
D O I
10.1111/sjos.12552
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalizations of the Ornstein-Uhlenbeck process defined through Langevin equations, such as fractional Ornstein-Uhlenbeck processes, have recently received a lot of attention. However, most of the literature focuses on the one-dimensional case with Gaussian noise. In particular, estimation of the unknown parameter is widely studied under Gaussian stationary increment noise. In this article, we consider estimation of the unknown model parameter in the multidimensional version of the Langevin equation, where the parameter is a matrix and the noise is a general, not necessarily Gaussian, vector-valued process with stationary increments. Based on algebraic Riccati equations, we construct an estimator for the parameter matrix. Moreover, we prove the consistency of the estimator and derive its limiting distribution under natural assumptions. In addition, to motivate our work, we prove that the Langevin equation characterizes essentially all multidimensional stationary processes.
引用
收藏
页码:992 / 1022
页数:31
相关论文
共 50 条
  • [41] Asymptotic results for finite superpositions of Ornstein-Uhlenbeck processes
    Macci, Claudio
    Pacchiarotti, Barbara
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (06) : 954 - 979
  • [42] Minimum contrast estimator for fractional Ornstein-Uhlenbeck processes
    Xiao WeiLin
    Zhang WeiGuo
    Zhang XiLi
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1497 - 1511
  • [43] ON THE TRANSITION LAW OF TEMPERED STABLE ORNSTEIN-UHLENBECK PROCESSES
    Zhang, Shibin
    Zhang, Xinsheng
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (03) : 721 - 731
  • [44] Phase transition on the convergence rate of parameter estimation under an Ornstein-Uhlenbeck diffusion on a tree
    Ane, Cecile
    Ho, Lam Si Tung
    Roch, Sebastien
    JOURNAL OF MATHEMATICAL BIOLOGY, 2017, 74 (1-2) : 355 - 385
  • [45] Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise
    El Onsy, Brahim
    Es-Sebaiy, Khalifa
    Viens, Frederi G.
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2017, 89 (02) : 431 - 468
  • [46] Exact simulation of Ornstein-Uhlenbeck tempered stable processes
    Qu, Yan
    Dassios, Angelos
    Zhao, Hongbiao
    JOURNAL OF APPLIED PROBABILITY, 2021, 58 (02) : 347 - 371
  • [47] Simulation of multifractal products of Ornstein-Uhlenbeck type processes
    Anh, Vo V.
    Leonenko, Nikolai N.
    Shieh, Narn-Rueih
    Taufer, Emanuele
    NONLINEARITY, 2010, 23 (04) : 823 - 843
  • [48] Fast simulation of tempered stable Ornstein-Uhlenbeck processes
    Sabino, Piergiacomo
    Petroni, Nicola Cufaro
    COMPUTATIONAL STATISTICS, 2022, 37 (05) : 2517 - 2551
  • [49] Exact simulation of tempered stable Ornstein-Uhlenbeck processes
    Zhang, Shibin
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (11) : 1533 - 1544
  • [50] Gamma-related Ornstein-Uhlenbeck processes and their simulation
    Sabino, Piergiacomo
    Petroni, Nicola Cufaro
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (06) : 1108 - 1133