Vector-valued generalized Ornstein-Uhlenbeck processes: Properties and parameter estimation

被引:6
|
作者
Voutilainen, Marko [1 ,2 ]
Viitasaari, Lauri [3 ]
Ilmonen, Pauliina [2 ]
Torres, Soledad [4 ]
Tudor, Ciprian [5 ]
机构
[1] Turku Sch Econ & Business Adm, Dept Accounting & Finance, Turku, Finland
[2] Aalto Univ Sch Sci, Dept Math & Syst Anal, Espoo, Finland
[3] Aalto Univ, Dept Informat & Serv Management, Sch Business, Espoo, Finland
[4] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[5] Univ Lille 1, UFR Math, Lille, France
关键词
algebraic Riccati equations; consistency; Langevin equation; multivariate Ornstein-Uhlenbeck process; nonparametric estimation; stationary processes; LANGEVIN EQUATION; RICCATI EQUATION; DRIVEN; STATIONARY; MODELS;
D O I
10.1111/sjos.12552
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalizations of the Ornstein-Uhlenbeck process defined through Langevin equations, such as fractional Ornstein-Uhlenbeck processes, have recently received a lot of attention. However, most of the literature focuses on the one-dimensional case with Gaussian noise. In particular, estimation of the unknown parameter is widely studied under Gaussian stationary increment noise. In this article, we consider estimation of the unknown model parameter in the multidimensional version of the Langevin equation, where the parameter is a matrix and the noise is a general, not necessarily Gaussian, vector-valued process with stationary increments. Based on algebraic Riccati equations, we construct an estimator for the parameter matrix. Moreover, we prove the consistency of the estimator and derive its limiting distribution under natural assumptions. In addition, to motivate our work, we prove that the Langevin equation characterizes essentially all multidimensional stationary processes.
引用
收藏
页码:992 / 1022
页数:31
相关论文
共 50 条
  • [31] Transition Law-based Simulation of Generalized Inverse Gaussian Ornstein-Uhlenbeck Processes
    Zhang, Shibin
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2011, 13 (03) : 619 - 656
  • [32] Hermite Ornstein-Uhlenbeck processes mixed with a Gamma distribution
    Douissi, Soukaina
    Es-Sebaiy, Khalifa
    Tudor, Ciprian A.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 96 (1-2): : 23 - 44
  • [33] Skew Ornstein-Uhlenbeck processes and their financial applications
    Wang, Suxin
    Song, Shiyu
    Wang, Yongjin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 363 - 382
  • [34] MARKOV-MODULATED ORNSTEIN-UHLENBECK PROCESSES
    Huang, G.
    Jansen, H. M.
    Mandjes, M.
    Spreij, P.
    De Turck, K.
    ADVANCES IN APPLIED PROBABILITY, 2016, 48 (01) : 235 - 254
  • [35] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Bai, Yizhou
    Wang, Yongjin
    Zhang, Haoyan
    Zhuo, Xiaoyang
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 479 - 527
  • [36] Ornstein-Uhlenbeck processes for geophysical data analysis
    Habtemicael, Semere
    SenGupta, Indranil
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 399 : 147 - 156
  • [37] Intermittency of Superpositions of Ornstein-Uhlenbeck Type Processes
    Grahovac, Danijel
    Leonenko, Nikolai N.
    Sikorskii, Alla
    Tesnjak, Irena
    JOURNAL OF STATISTICAL PHYSICS, 2016, 165 (02) : 390 - 408
  • [38] Parameter Estimation for Squared Radial Ornstein-Uhlenbeck Process from Discrete Observation
    Wei, Chao
    Li, Dehe
    Yao, Hejun
    ENGINEERING LETTERS, 2021, 29 (02) : 781 - 788
  • [39] Short and long memory fractional Ornstein-Uhlenbeck α-stable processes
    Magdziarz, Marcin
    STOCHASTIC MODELS, 2007, 23 (03) : 451 - 473
  • [40] Efficient maximum likelihood estimation for Levy-driven Ornstein-Uhlenbeck processes
    Mai, Hilmar
    BERNOULLI, 2014, 20 (02) : 919 - 957