Vector-valued generalized Ornstein-Uhlenbeck processes: Properties and parameter estimation

被引:5
|
作者
Voutilainen, Marko [1 ,2 ]
Viitasaari, Lauri [3 ]
Ilmonen, Pauliina [2 ]
Torres, Soledad [4 ]
Tudor, Ciprian [5 ]
机构
[1] Turku Sch Econ & Business Adm, Dept Accounting & Finance, Turku, Finland
[2] Aalto Univ Sch Sci, Dept Math & Syst Anal, Espoo, Finland
[3] Aalto Univ, Dept Informat & Serv Management, Sch Business, Espoo, Finland
[4] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[5] Univ Lille 1, UFR Math, Lille, France
关键词
algebraic Riccati equations; consistency; Langevin equation; multivariate Ornstein-Uhlenbeck process; nonparametric estimation; stationary processes; LANGEVIN EQUATION; RICCATI EQUATION; DRIVEN; STATIONARY; MODELS;
D O I
10.1111/sjos.12552
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalizations of the Ornstein-Uhlenbeck process defined through Langevin equations, such as fractional Ornstein-Uhlenbeck processes, have recently received a lot of attention. However, most of the literature focuses on the one-dimensional case with Gaussian noise. In particular, estimation of the unknown parameter is widely studied under Gaussian stationary increment noise. In this article, we consider estimation of the unknown model parameter in the multidimensional version of the Langevin equation, where the parameter is a matrix and the noise is a general, not necessarily Gaussian, vector-valued process with stationary increments. Based on algebraic Riccati equations, we construct an estimator for the parameter matrix. Moreover, we prove the consistency of the estimator and derive its limiting distribution under natural assumptions. In addition, to motivate our work, we prove that the Langevin equation characterizes essentially all multidimensional stationary processes.
引用
收藏
页码:992 / 1022
页数:31
相关论文
共 50 条
  • [21] Robust parameter estimation for the Ornstein-Uhlenbeck process
    Rieder, Sonja
    STATISTICAL METHODS AND APPLICATIONS, 2012, 21 (04): : 411 - 436
  • [22] On parameter estimation of the hidden Ornstein-Uhlenbeck process
    Kutoyants, Yury A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 169 : 248 - 263
  • [23] Parameter estimation for Ornstein-Uhlenbeck processes driven by fractional Levy process
    Shen, Guangjun
    Li, Yunmeng
    Gao, Zhenlong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [24] On parameter estimation of fractional Ornstein-Uhlenbeck process
    Farah, Fatima-Ezzahra
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (03) : 161 - 170
  • [25] TWO-PARAMETER ORNSTEIN-UHLENBECK PROCESSES
    王梓坤
    Acta Mathematica Scientia, 1984, (01) : 1 - 12
  • [26] Time irregularity of generalized Ornstein-Uhlenbeck processes
    Brzezniak, Zdzislaw
    Goldys, Ben
    Imkeller, Peter
    Peszat, Szymon
    Priola, Enrico
    Zabczyk, Jerzy
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (5-6) : 273 - 276
  • [27] Statistical inference for generalized Ornstein-Uhlenbeck processes
    Belomestny, Denis
    Panov, Vladimir
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 1974 - 2006
  • [28] Parameter estimation for integrated Ornstein-Uhlenbeck processes with small Levy noises
    Shu, Huisheng
    Jiang, Ziwei
    Zhang, Xuekang
    STATISTICS & PROBABILITY LETTERS, 2023, 199
  • [29] Parameter estimation for threshold Ornstein-Uhlenbeck processes from discrete observations
    Hu, Yaozhong
    Xi, Yuejuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [30] SAMPLE PATH PROPERTIES OF LP-VALUED ORNSTEIN-UHLENBECK PROCESSES
    SCHMULAND, B
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (03): : 358 - 366