Vector-valued generalized Ornstein-Uhlenbeck processes: Properties and parameter estimation

被引:5
|
作者
Voutilainen, Marko [1 ,2 ]
Viitasaari, Lauri [3 ]
Ilmonen, Pauliina [2 ]
Torres, Soledad [4 ]
Tudor, Ciprian [5 ]
机构
[1] Turku Sch Econ & Business Adm, Dept Accounting & Finance, Turku, Finland
[2] Aalto Univ Sch Sci, Dept Math & Syst Anal, Espoo, Finland
[3] Aalto Univ, Dept Informat & Serv Management, Sch Business, Espoo, Finland
[4] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[5] Univ Lille 1, UFR Math, Lille, France
关键词
algebraic Riccati equations; consistency; Langevin equation; multivariate Ornstein-Uhlenbeck process; nonparametric estimation; stationary processes; LANGEVIN EQUATION; RICCATI EQUATION; DRIVEN; STATIONARY; MODELS;
D O I
10.1111/sjos.12552
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generalizations of the Ornstein-Uhlenbeck process defined through Langevin equations, such as fractional Ornstein-Uhlenbeck processes, have recently received a lot of attention. However, most of the literature focuses on the one-dimensional case with Gaussian noise. In particular, estimation of the unknown parameter is widely studied under Gaussian stationary increment noise. In this article, we consider estimation of the unknown model parameter in the multidimensional version of the Langevin equation, where the parameter is a matrix and the noise is a general, not necessarily Gaussian, vector-valued process with stationary increments. Based on algebraic Riccati equations, we construct an estimator for the parameter matrix. Moreover, we prove the consistency of the estimator and derive its limiting distribution under natural assumptions. In addition, to motivate our work, we prove that the Langevin equation characterizes essentially all multidimensional stationary processes.
引用
收藏
页码:992 / 1022
页数:31
相关论文
共 50 条
  • [1] Vector-valued extensions of operators related to the Ornstein-Uhlenbeck semigroup
    Harboure, E
    Torrea, JL
    Viviani, B
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 91 (1): : 1 - 29
  • [2] Parameter Estimation for Complex Ornstein-Uhlenbeck Processes
    潘玉荣
    孙西超
    JournalofDonghuaUniversity(EnglishEdition), 2019, 36 (04) : 399 - 404
  • [3] Parameter estimation for fractional Ornstein-Uhlenbeck processes
    Hu, Yaozhong
    Nualart, David
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (11-12) : 1030 - 1038
  • [4] Vector-valued extensions of operators related to the Ornstein-Uhlenbeck semigroup
    E. Harboure
    J. L. Torrea
    B. Viviani
    Journal d’Analyse Mathématique, 2003, 91 : 1 - 29
  • [5] Parameter Estimation for Ornstein-Uhlenbeck Driven by Ornstein-Uhlenbeck Processes with Small Levy Noises
    Zhang, Xuekang
    Shu, Huisheng
    Yi, Haoran
    JOURNAL OF THEORETICAL PROBABILITY, 2023, 36 (01) : 78 - 98
  • [6] Generalized Ornstein-Uhlenbeck processes
    Bezuglyy, V.
    Mehlig, B.
    Wilkinson, M.
    Nakamura, K.
    Arvedson, E.
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (07)
  • [7] Ergodic properties of generalized Ornstein-Uhlenbeck processes
    Kevei, Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (01) : 156 - 181
  • [8] PROPERTIES OF 2-PARAMETER ORNSTEIN-UHLENBECK PROCESSES
    WANG, ZK
    KEXUE TONGBAO, 1984, 29 (10): : 1415 - 1415
  • [9] PROPERTIES OF TWO-PARAMETER ORNSTEIN-UHLENBECK PROCESSES
    王梓坤
    A Monthly Journal of Science, 1984, (10) : 1415 - 1415
  • [10] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44