Selective Butene Formation in Direct Ethanol-to-C3+-Olefin Valorization over Zn-Y/Beta and Single-Atom Alloy Composite Catalysts Using In Situ-Generated Hydrogen

被引:19
作者
Cordon, Michael J. [1 ]
Zhang, Junyan [1 ,2 ]
Purdy, Stephen C. [3 ,4 ]
Wegener, Evan C. [5 ]
Unocic, Kinga A. [6 ]
Allard, Lawrence F. [7 ]
Zhou, Mingxia [8 ]
Assary, Rajeev S. [8 ]
Miller, Jeffrey T. [3 ]
Krause, Theodore R. [5 ]
Lin, Fan [9 ]
Wang, Huamin [9 ]
Kropf, A. Jeremy [5 ]
Yang, Ce [5 ]
Liu, Dongxia [2 ]
Li, Zhenglong [1 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37830 USA
[2] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[3] Purdue Univ, Dept Chem Engn, W Lafayette, IN 47907 USA
[4] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN 37830 USA
[5] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[6] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[7] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
[8] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[9] Pacific Northwest Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA
基金
美国国家科学基金会;
关键词
ethanol; butenes; butadiene; selective hydrogenation; catalysis; single-atom alloy; zeolite; FINDING SADDLE-POINTS; LEWIS-ACID SITES; ETHANOL CONVERSION; BIO-ETHANOL; OXIDE CATALYST; 1,3-BUTADIENE; BUTADIENE; SURFACE; ZEOLITES; SILICA;
D O I
10.1021/acscatal.1c01136
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The selective production of C3+ olefins from renewable feedstocks, especially via C-1 and C-2 platform chemicals, is a critical challenge for obtaining economically viable low-carbon middle-distillate transportation fuels (i.e., jet and diesel). Here, we report a multifunctional catalyst system composed of Zn-Y/Beta and "single-atom" alloy (SAA) Pt-Cu/Al2O3, which selectively catalyzes ethanol-to-olefin (C3+, ETO) valorization in the absence of cofed hydrogen, forming butenes as the primary olefin products. Beta zeolites containing predominately isolated Zn and Y metal sites catalyze ethanol upgrading steps (588 K, 3.1 kPa ethanol, ambient pressure) regardless of cofed hydrogen partial pressure (0-98.3 kPa H-2), forming butadiene as the primary product (60% selectivity at an 87% conversion). The Zn-Y/Beta catalyst possesses site-isolated Zn and Y Lewis acid sites (at similar to 7 wt % Y) and Bronsted acidic Y sites, the latter of which have been previously uncharacterized. A secondary bed of SAA Pt-Cu/Al2O3 selectively hydrogenates butadiene to butene isomers at a consistent reaction temperature using hydrogen generated in situ from ethanol to butadiene (ETB) conversion. This unique hydrogenation reactivity at near-stoichiometric hydrogen and butadiene partial pressures is not observed over monometallic Pt or Cu catalysts, highlighting these operating conditions as a critical SAA catalyst application area for conjugated diene selective hydrogenation at high reaction temperatures (>573 K) and low H-2/diene ratios (e.g., 1:1). Single-bed steady-state selective hydrogenation rates, associated apparent hydrogen and butadiene reaction orders, and density functional theory (DFT) calculations of the Horiuti-Polanyi reaction mechanisms indicate that the unique butadiene selective hydrogenation reactivity over SAA Pt-Cu/Al2O3 reflects lower hydrogen scission barriers relative to monometallic Cu surfaces and limited butene binding energies relative to monometallic Pt surfaces. DFT calculations further indicate the preferential desorption of butene isomers over SAA Pt-Cu(111) and Cu(111) surfaces, while Pt(111) surfaces favor subsequent butene hydrogenation reactions to form butane over butene desorption events. Under operating conditions without hydrogen cofeeding, this combination of Zn-Y/Beta and SAA Pt-Cu catalysts can selectively form butenes (65% butenes, 78% C3+ selectivity at 94% conversion) and avoid butane formation using only in situ-generated hydrogen, avoiding costly hydrogen cofeeding requirements that hinder many renewable energy processes.
引用
收藏
页码:7193 / 7209
页数:17
相关论文
共 71 条
  • [1] A hybrid pathway to biojet fuel via 2,3-butanediol
    Adhikari, Shiba P.
    Zhang, Junyan
    Guo, Qianying
    Unocic, Kinga A.
    Tao, Ling
    Li, Zhenglong
    [J]. SUSTAINABLE ENERGY & FUELS, 2020, 4 (08): : 3904 - 3914
  • [2] MECHANISTIC MODEL FOR FORMATION OF COKE IN PYROLYSIS UNITS PRODUCING ETHYLENE
    ALBRIGHT, LF
    MAREK, JC
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1988, 27 (05) : 755 - 759
  • [3] Kinetic study of the selective catalytic hydrogenation of 1,3-butadiene in a mixture of n-butenes
    Alves, Javier A.
    Bressa, Sergio P.
    Martinez, Osvaldo M.
    Barreto, Guillermo F.
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2012, 18 (04) : 1353 - 1365
  • [4] Ex Situ and Operando Studies on the Role of Copper in Cu-Promoted SiO2-MgO Catalysts for the Lebedev Ethanol-to-Butadiene Process
    Angelici, Carlo
    Meirer, Florian
    van der Eerden, Ad M. J.
    Schaink, Herrick L.
    Goryachev, Andrey
    Hofmann, Jan P.
    Hensen, Emiel J. M.
    Weckhuysen, Bert M.
    Bruijnincx, Pieter C. A.
    [J]. ACS CATALYSIS, 2015, 5 (10): : 6005 - 6015
  • [5] C2-C4 light olefins from bioethanol catalyzed by Ce-modified nanocrystalline HZSM-5 zeolite catalysts
    Bi, Jiandong
    Liu, Min
    Song, Chunsan
    Wang, Xiangsheng
    Guo, Xinwen
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 107 (1-2) : 68 - 76
  • [6] Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions
    Boucher, Matthew B.
    Zugic, Branko
    Cladaras, George
    Kammert, James
    Marcinkowski, Matthew D.
    Lawton, Timothy J.
    Sykes, E. Charles H.
    Flytzani-Stephanopoulos, Maria
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (29) : 12187 - 12196
  • [7] THE GENERATION OF BRONSTED AND LEWIS ACID SITES ON THE SURFACE OF SILICA BY ADDITION OF DOPANT CATIONS
    CONNELL, G
    DUMESIC, JA
    [J]. JOURNAL OF CATALYSIS, 1987, 105 (02) : 285 - 298
  • [8] Ethanol to 1,3-Butadiene Conversion by using ZrZn-Containing MgO/SiO2 Systems Prepared by Co-precipitation and Effect of Catalyst Acidity Modification
    Da Ros, Simoni
    Jones, Matthew D.
    Mattia, Davide
    Pinto, Jose C.
    Schwaab, Marcio
    Noronha, Fabio B.
    Kondrat, Simon A.
    Clarke, Tomos C.
    Taylor, Stuart H.
    [J]. CHEMCATCHEM, 2016, 8 (14) : 2376 - 2386
  • [9] Zeolite Structural Confinement Effects Enhance One-Pot Catalytic Conversion of Ethanol to Butadiene
    Dai, Weili
    Zhang, Shanshan
    Yu, Zhiyang
    Yan, Tingting
    Wu, Guangjun
    Guan, Naijia
    Li, Landong
    [J]. ACS CATALYSIS, 2017, 7 (05): : 3703 - 3706
  • [10] ELUCIDATION OF MECHANISM OF CONVERSION OF METHANOL AND ETHANOL TO HYDROCARBONS ON A NEW TYPE OF SYNTHETIC ZEOLITE
    DEROUANE, EG
    NAGY, JB
    DEJAIFVE, P
    VANHOOFF, JHC
    SPEKMAN, BP
    VEDRINE, JC
    NACCACHE, C
    [J]. JOURNAL OF CATALYSIS, 1978, 53 (01) : 40 - 55