On defining the incomplete Gamma function

被引:21
作者
Fisher, B [1 ]
Jolevsaka-Tuneska, B
Kiliçman, A
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] De Montfort Univ, SERC, Inst Simulat Sci, Leicester LE1 9BH, Leics, England
[3] Fac Elect Engn, Skopje, Macedonia
[4] Univ Pertanian Malaysia, Dept Math, Serdang 43400, Selangor, Malaysia
[5] Univ Pertanian Malaysia, Inst Adv Technol, Theoret Studies Lab, Serdang 43400, Selangor, Malaysia
关键词
Gamma function; incomplete Gamma function; Delta function;
D O I
10.1080/1065246031000081667
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incomplete Gamma function gamma(alpha, x(+)) is defined as locally summable function on the real line for alpha < 0 by γ(α, x(+)) = ∫(x)(0)+ u(alpha-1) e(-u) du, the integral diverging for alpha less than or equal to 0. The incomplete Gamma function can be defined as a distribution for alpha < 0 and α ¬equal; -1, -2,... by using the recurrence formula γ(α + 1, x(+)) = αγ(α, x(+)) -x(+)(alpha)e(-x). In the following, we define the distribution gamma(-m,x(+)) for m = 0, 1, 2,....
引用
收藏
页码:293 / 299
页数:7
相关论文
共 7 条
[1]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[2]  
Fisher B., 1987, J FACULTY ED TOTTORI, V36, P1
[3]  
FISHER B, 2002, RADOVI MAT, V11, P37
[4]  
FISHER B, 1989, 4 INT C COMPL AN APP, P169
[5]  
Fisher B., 1980, MATH STUDENT, V48, P269
[6]  
GELFAND IM, 1964, GEN FUNCT, V1, pCH1
[7]  
van der Corput J. G., 1959, J. Analyse Math., V7, P291