A fast sparse grid based space-time boundary element method for the nonstationary heat equation

被引:8
作者
Harbrecht, Helmut [1 ]
Tausch, Johannes [2 ]
机构
[1] Univ Basel, Dept Math & Informat, Basel, Switzerland
[2] Southern Methodist Univ, Dept Math, Dallas, TX 75275 USA
基金
美国国家科学基金会;
关键词
INTEGRAL-EQUATIONS; GALERKIN BEM; OPERATORS;
D O I
10.1007/s00211-018-0963-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article presents a fast sparse grid based space-time boundary element method for the solution of the nonstationary heat equation. We make an indirect ansatz based on the thermal single layer potential which yields a first kind integral equation. This integral equation is discretized by Galerkin's method with respect to the sparse tensor product of the spatial and temporal ansatz spaces. By employing the -matrix and Toeplitz structure of the resulting discretized operators, we arrive at an algorithm which computes the approximate solution in a complexity that essentially corresponds to that of the spatial discretization. Nevertheless, the convergence rate is nearly the same as in case of a traditional discretization in full tensor product spaces.
引用
收藏
页码:239 / 264
页数:26
相关论文
共 23 条
[1]   The solution of multidimensional real Helmholtz equations on sparse grids [J].
Balder, R ;
Zenger, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03) :631-646
[2]  
Bungartz H.-J., 1997, Electronic Transactions on Numerical Analysis, V6, P63
[3]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[4]   Sparse tensor product spectral Galerkin BEM for elliptic problems with random input data on a spheroid [J].
Chernov, Alexey ;
Duong Pham .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (01) :77-104
[5]   Sparse space-time Galerkin BEM for the nonstationary heat equation [J].
Chernov, Alexey ;
Schwab, Christoph .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (6-7) :403-413
[6]   BOUNDARY INTEGRAL-OPERATORS FOR THE HEAT-EQUATION [J].
COSTABEL, M .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (04) :498-552
[7]   Efficient automatic quadrature in 3-d Galerkin BEM [J].
Erichsen, S ;
Sauter, SA .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 157 (3-4) :215-224
[8]   A sparse grid space-time discretization scheme for parabolic problems [J].
Griebel, M. ;
Oeltz, D. .
COMPUTING, 2007, 81 (01) :1-34
[9]   Sparse grids for boundary integral equations [J].
Griebel, M ;
Oswald, P ;
Schiekofer, T .
NUMERISCHE MATHEMATIK, 1999, 83 (02) :279-312
[10]  
Griebel M, 2013, MATH COMPUT, V82, P975