Mapping Intracellular Temperature Using Green Fluorescent Protein

被引:369
作者
Donner, Jon S. [1 ]
Thompson, Sebastian A. [1 ]
Kreuzer, Mark P. [1 ]
Baffou, Guillaume [2 ]
Quidant, Romain [1 ,3 ]
机构
[1] ICFO Inst Ciencies Foton, Castelldefels 08860, Barcelona, Spain
[2] Aix Marseille Univ, CNRS, Inst Fresnel, F-13197 Marseille 20, France
[3] ICREA, Barcelona 08010, Spain
基金
欧洲研究理事会;
关键词
Thermal imaging; GFP; cancer cells; fluorescence imaging; anisotropy; CELLS; MITOCHONDRIAL; VISCOSITY; THERAPY;
D O I
10.1021/nl300389y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heat is of fundamental importance in many cellular processes such as cell metabolism, cell division and gene expression.(1-3) Accurate and noninvasive monitoring of temperature changes in individual cells could thus help clarify intricate cellular processes and develop new applications in biology and medicine. Here we report the use of green fluorescent proteins (GFP) as thermal nanoprobes suited for intracellular temperature mapping. Temperature probing is achieved by monitoring the fluorescence polarization anisotropy of GFP. The method is tested on GFP-transfected Hela and U-87 MG cancer cell lines where we monitored the heat delivery by photothermal heating of gold nanorods surrounding the cells. A spatial resolution of 300 nm and a temperature accuracy of about 0.4 degrees C are achieved. Benefiting from its full compatibility with widely used GFP-transfected cells, this approach provides a noninvasive tool for fundamental and applied research in areas ranging from molecular biology to therapeutic and diagnostic studies.
引用
收藏
页码:2107 / 2111
页数:5
相关论文
共 31 条
  • [1] Mitochondrial uncoupling proteins in the CNS: In support of function and survival
    Andrews, ZB
    Diano, S
    Horvath, TL
    [J]. NATURE REVIEWS NEUROSCIENCE, 2005, 6 (11) : 829 - 840
  • [2] Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy
    Baffou, G.
    Kreuzer, M. P.
    Kulzer, F.
    Quidant, R.
    [J]. OPTICS EXPRESS, 2009, 17 (05): : 3291 - 3298
  • [3] Mapping Heat Origin in Plasmonic Structures
    Baffou, Guillaume
    Girard, Christian
    Quidant, Romain
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [4] Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer
    Bardhan, Rizia
    Lal, Surbhi
    Joshi, Amit
    Halas, Naomi J.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (10) : 936 - 946
  • [5] RENATURATION OF AEQUOREA GREEN-FLUORESCENT PROTEIN
    BOKMAN, SH
    WARD, WW
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1981, 101 (04) : 1372 - 1380
  • [6] Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions
    Busch, NA
    Kim, T
    Bloomfield, VA
    [J]. MACROMOLECULES, 2000, 33 (16) : 5932 - 5937
  • [7] The fluorescent protein palette: tools for cellular imaging
    Day, Richard N.
    Davidson, Michael W.
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (10) : 2887 - 2921
  • [8] Genetically encoded biosensors based on engineered fluorescent proteins
    Frommer, Wolf B.
    Davidson, Michael W.
    Campbell, Robert E.
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (10) : 2833 - 2841
  • [9] Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry
    Gota, Chie
    Okabe, Kohki
    Funatsu, Takashi
    Harada, Yoshie
    Uchiyama, Seiichi
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (08) : 2766 - +
  • [10] Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein
    Hink, MA
    Griep, RA
    Borst, JW
    van Hoek, A
    Eppink, MHM
    Schots, A
    Visser, AJWG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (23) : 17556 - 17560