Efficient forward second-harmonic generation from planar archimedean nanospirals

被引:18
作者
Davidson, Roderick B., II [1 ]
Ziegler, Jed I. [1 ]
Vargas, Guillermo [1 ]
Avanesyan, Sergey M. [1 ]
Gong, Yu [2 ]
Hess, Wayne [2 ]
Haglund, Richard F., Jr.
机构
[1] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[2] Pacific NW Natl Lab, Div Phys Sci, Richland, WA 99352 USA
基金
美国国家科学基金会; 美国能源部;
关键词
nonlinear plasmonics; asymmetric nanoparticles; polarization conversion; metasurfaces; near-field enhancement; Archimedean nanospirals; DEPOLARIZED LIGHT-SCATTERING; NANOPARTICLES; ARRAYS; NANOSTRUCTURES;
D O I
10.1515/nanoph-2015-0002
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from non-centrosymmetric nanoparticles that retain a local axis of symmetry. Here, we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulses from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6.10(-9), 8.10(-9) and 1.3.10(-8) for left-handed circular, linear, and right-handed circular polarizations, respectively. The uncoated nanospirals are stable under average power loading of as much as 300 mu W per nanoparticle. The nanospirals also exhibit selective conversion between polarization states. These experiments show that the intrinsic asymmetry of the nanospirals results in a highly efficient, two-dimensional harmonic generator that can be incorporated into metasurface optics.
引用
收藏
页码:108 / 113
页数:6
相关论文
共 28 条
[1]   Multiresonant Broadband Optical Antennas As Efficient Tunable Nanosources of Second Harmonic Light [J].
Aouani, Heykel ;
Navarro-Cia, Miguel ;
Rahmani, Mohsen ;
Sidiropoulos, Themistoklis P. H. ;
Hong, Minghui ;
Oulton, Rupert F. ;
Maier, Stefan A. .
NANO LETTERS, 2012, 12 (09) :4997-5002
[2]  
Boyd R. W., 2008, Nonlinear Optics, V3rd
[3]   Interference of surface plasmon resonances causes enhanced depolarized light scattering from metal nanoparticles [J].
Calander, Nils ;
Gryczynski, Ignacy ;
Gryczynski, Zygmunt .
CHEMICAL PHYSICS LETTERS, 2007, 434 (4-6) :326-330
[4]   Multipolar second harmonic generation from planar arrays of Au nanoparticles [J].
Capretti, Antonio ;
Walsh, Gary F. ;
Minissale, Salvatore ;
Trevino, Jacob ;
Forestiere, Carlo ;
Miano, Giovanni ;
Dal Negro, Luca .
OPTICS EXPRESS, 2012, 20 (14) :15797-15806
[5]   Dipole limit in second-harmonic generation from arrays of gold nanoparticles [J].
Czaplicki, Robert ;
Zdanowicz, Mariusz ;
Koskinen, Kalle ;
Laukkanen, Janne ;
Kuittinen, Markku ;
Kauranen, Martti .
OPTICS EXPRESS, 2011, 19 (27) :26866-26871
[6]   Strong chiral optical response from planar arrays of subwavelength metallic structures supporting surface plasmon resonances [J].
Eftekhari, F. ;
Davis, T. J. .
PHYSICAL REVIEW B, 2012, 86 (07)
[7]   Large-Area 3D Chiral Plasmonic Structures [J].
Frank, Bettina ;
Yin, Xinghui ;
Schaeferling, Martin ;
Zhao, Jun ;
Hein, Sven M. ;
Braun, Paul V. ;
Giessen, Harald .
ACS NANO, 2013, 7 (07) :6321-6329
[8]   Generating Far-Field Orbital Angular Momenta from Near-Field Optical Chirality [J].
Gorodetski, Yuri ;
Drezet, Aurelien ;
Genet, Cyriaque ;
Ebbesen, Thomas W. .
PHYSICAL REVIEW LETTERS, 2013, 110 (20)
[9]   Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art [J].
Grigorescu, A. E. ;
Hagen, C. W. .
NANOTECHNOLOGY, 2009, 20 (29)
[10]   Depolarized Light Scattering From Single Silver Nanoparticles [J].
Heckel, John C. ;
Chumanov, George .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (15) :7261-7269