A weak Galerkin finite element method for the Navier-Stokes equations

被引:39
|
作者
Liu, Xin [1 ]
Li, Jian [2 ,3 ]
Chen, Zhangxin [1 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Arts & Sci, Xian 710021, Shaanxi, Peoples R China
[3] Baoji Univ Arts & Sci, Dept Math, Baoji 721007, Peoples R China
[4] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Weak Galerkin; Finite element methods; Navier-Stokes equations; More general partitions; 2ND-ORDER ELLIPTIC PROBLEMS; BIHARMONIC EQUATION; HELMHOLTZ-EQUATION; POLYTOPAL MESHES; FLOW;
D O I
10.1016/j.cam.2017.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a weak Galerkin finite element method for the Navier-Stokes equations. The new formulation hinges upon the introduction of weak gradient, weak divergence and weak trilinear operators. Moreover, by choosing the matching finite element triples, this new method not only obtains stability and optimal error estimates but also has a lot of attractive computational features: general finite element partitions of arbitrary polygons or polyhedra with certain shape regularity and parameter free. Finally, several numerical experiments assess the convergence properties of the new method and show its computational advantages. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:442 / 457
页数:16
相关论文
共 50 条
  • [31] A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations
    Barrenechea, Gabriel R.
    Chouly, Franz
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2009, 89 (01): : 54 - 68
  • [32] Local projection stabilized finite element method for Navier-Stokes equations
    覃燕梅
    冯民富
    罗鲲
    吴开腾
    Applied Mathematics and Mechanics(English Edition), 2010, 31 (05) : 651 - 664
  • [33] Study of Multiple Solutions for the Navier-Stokes Equations by a Finite Element Method
    Xu, Huanxia
    Lin, Ping
    Si, Xinhui
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (01) : 107 - 122
  • [34] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Song, Lina
    Hou, Yanren
    Zheng, Haibiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 255 - 267
  • [35] Local projection stabilized finite element method for Navier-Stokes equations
    Yan-mei Qin
    Min-fu Feng
    Kun Luo
    Kai-teng Wu
    Applied Mathematics and Mechanics, 2010, 31 : 651 - 664
  • [36] A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations
    Ren, Jincheng
    Ma, Yue
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (02) : 646 - 660
  • [37] Adaptive Local Postprocessing Finite Element Method for the Navier-Stokes Equations
    Lina Song
    Yanren Hou
    Haibiao Zheng
    Journal of Scientific Computing, 2013, 55 : 255 - 267
  • [38] Local projection stabilized finite element method for Navier-Stokes equations
    Qin, Yan-mei
    Feng, Min-fu
    Luo, Kun
    Wu, Kai-teng
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (05) : 651 - 664
  • [39] POSTPROCESSING FOURIER GALERKIN METHOD FOR THE NAVIER-STOKES EQUATIONS
    Hou, Yanren
    Li, Kaitai
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1909 - 1922
  • [40] Superconvergence of a nonconforming finite element method for the stationary Navier-Stokes equations
    Huang, Pengzhan
    Ma, Xiaoling
    Zhang, Tong
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2016, 59 (02): : 159 - 174