A weak Galerkin finite element method for the Navier-Stokes equations

被引:39
|
作者
Liu, Xin [1 ]
Li, Jian [2 ,3 ]
Chen, Zhangxin [1 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Arts & Sci, Xian 710021, Shaanxi, Peoples R China
[3] Baoji Univ Arts & Sci, Dept Math, Baoji 721007, Peoples R China
[4] Univ Calgary, Schulich Sch Engn, Dept Chem & Petr Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
关键词
Weak Galerkin; Finite element methods; Navier-Stokes equations; More general partitions; 2ND-ORDER ELLIPTIC PROBLEMS; BIHARMONIC EQUATION; HELMHOLTZ-EQUATION; POLYTOPAL MESHES; FLOW;
D O I
10.1016/j.cam.2017.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose and analyze a weak Galerkin finite element method for the Navier-Stokes equations. The new formulation hinges upon the introduction of weak gradient, weak divergence and weak trilinear operators. Moreover, by choosing the matching finite element triples, this new method not only obtains stability and optimal error estimates but also has a lot of attractive computational features: general finite element partitions of arbitrary polygons or polyhedra with certain shape regularity and parameter free. Finally, several numerical experiments assess the convergence properties of the new method and show its computational advantages. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:442 / 457
页数:16
相关论文
共 50 条
  • [21] Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations
    Tobiska, L
    Verfurth, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 107 - 127
  • [22] AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
    Camano, Jessika
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Tierra, Giordano
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1069 - 1092
  • [23] A Weak Galerkin Finite Element Method for the Maxwell Equations
    Mu, Lin
    Wang, Junping
    Ye, Xiu
    Zhang, Shangyou
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 363 - 386
  • [24] NONLINEAR GALERKIN METHOD FOR THE EXTERIORNONSTATIONARY NAVIER-STOKES EQUATIONS
    何银年
    李开泰
    AppliedMathematicsandMechanics(EnglishEdition), 2002, (11) : 1282 - 1291
  • [25] Reduced finite element discretizations of the Stokes and Navier-stokes equations
    Knobloch, P
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (02) : 161 - 187
  • [26] Central Discontinuous Galerkin Method for the Navier-Stokes Equations
    Tan Ren
    Chao Wang
    Haining Dong
    Danjie Zhou
    JournalofBeijingInstituteofTechnology, 2017, 26 (02) : 158 - 164
  • [27] Stabilized finite-element method for the stationary Navier-Stokes equations
    Yinnian He
    Aiwen Wang
    Liquan Mei
    Journal of Engineering Mathematics, 2005, 51 : 367 - 380
  • [28] Stabilized finite-element method for the stationary Navier-Stokes equations
    He, YN
    Wang, AW
    Mei, LQ
    JOURNAL OF ENGINEERING MATHEMATICS, 2005, 51 (04) : 367 - 380
  • [29] The postprocessed mixed finite-element method for the Navier-Stokes equations
    Ayuso, B
    García-Archilla, B
    Novo, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1091 - 1111
  • [30] A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS
    Houde Han Ming Yan Department of Mathematics
    Journal of Computational Mathematics, 2008, 26 (06) : 816 - 824