Yamabe equations on infinite graphs

被引:29
作者
Ge, Huabin [1 ]
Jiang, Wenfeng [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[2] Sun Yet Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
关键词
Yamabe equation; Infinite graphs; CONFORMAL DEFORMATION; DIRICHLET; EXISTENCE;
D O I
10.1016/j.jmaa.2017.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We concern in this paper the graph Yamabe equation Delta u + hu = g vertical bar u vertical bar(P-2)u, with known functions h and g on an infinite graph, the prototype of which comes from the smooth Yamabe equation on an open manifold. We prove the existence of a solution to the graph Yamabe equation under the assumption that (1) the graph Laplacian Delta is a bounded operator and (2) g is bounded and h is large at infinity. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:885 / 890
页数:6
相关论文
共 13 条
  • [1] [Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
  • [2] Aubin T., 1976, Differential Geometry and Relativity, P5
  • [3] Ge H., 2016, ARXIV161104906
  • [4] Existence of positive solutions to some nonlinear equations on locally finite graphs
    Grigor'yan, Alexander
    Lin Yong
    Yang YunYan
    [J]. SCIENCE CHINA-MATHEMATICS, 2017, 60 (07) : 1311 - 1324
  • [5] Yamabe type equations on graphs
    Grigor'yan, Alexander
    Lin, Yong
    Yang, Yunyan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) : 4924 - 4943
  • [6] Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions
    Haeseler, Sebastian
    Keller, Matthias
    Lenz, Daniel
    Wojciechowski, Radoslaw
    [J]. JOURNAL OF SPECTRAL THEORY, 2012, 2 (04) : 397 - 432
  • [7] EXISTENCE AND CONFORMAL DEFORMATION OF METRICS WITH PRESCRIBED GAUSSIAN AND SCALAR CURVATURES
    KAZDAN, JL
    WARNER, FW
    [J]. ANNALS OF MATHEMATICS, 1975, 101 (02) : 317 - 331
  • [8] CURVATURE FUNCTIONS FOR OPEN 2-MANIFOLDS
    KAZDAN, JL
    WARNER, FW
    [J]. ANNALS OF MATHEMATICS, 1974, 99 (02) : 203 - 219
  • [9] KAZDAN JL, 1975, J DIFFERENTIAL GEOME, V10, P113
  • [10] Dirichlet forms and stochastic completeness of graphs and subgraphs
    Keller, Matthias
    Lenz, Daniel
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 666 : 189 - 223